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Functional and Regulatory Analysis of the
Dictyostelium G-Box Binding Factor

Jason M. Brown1 and Richard A. Firtel2

Section of Cell and Developmental Biology and Center for Molecular Genetics, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0634

The Dictyostelium discoidium G-box binding factor (GBF) is required for the induction of known postaggregative and
ell-type-specific genes. gbf-null cells undergo developmental arrest at the loose-mound stage due to the absence of
BF-targeted gene transcription. GBF-mediated gene expression is activated by stimulation of cell-surface, seven-span

AMP receptors, but this activation is independent of heterotrimeric G-proteins. To further characterize GBF, we assayed
series of GBF mutants for their ability to bind a G-box in vitro and to complement the gbf-null phenotype. In vitro
NA-binding activity resides in the central portion of the protein, which contains two predicted zinc fingers. However, in
ivo GBF function requires only one intact zinc finger. In addition, expression of some GBF mutants results in a partial
omplementation phenotype, suggesting that these mutants are hypomorphic alleles. We used a 2.4-kb GBF-promoter
ragment to examine the regulation of GBF expression. GBF promoter-reporter studies confirmed the previous finding that
BF transcription is induced by continuous, micromolar extracellular cAMP. We also show that, like the activation of
BF-regulated transcription, the induction of GBF expression requires cell-surface cAMP receptors, but not heterotrimeric
-proteins. Finally, reporter studies demonstrated that induction of GBF-promoter-regulated expression does not require

he presence of GBF protein, indicating that GBF expression is not regulated by a positive autoregulatory
oop. © 2001 Academic Press

Key Words: Dictyostelium; transcription factor; gene regulation.
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INTRODUCTION

Under starvation conditions, up to ;105 Dictyostelium
ells aggregate to create a multicellular organism. The
ormation of a mound of cells is followed by cell-type
ifferentiation and morphogenesis to eventually yield a
ruiting body containing a mass of dormant spores sup-
orted by a long, slender stalk (Aubry and Firtel, 1999;
irtel, 1995; Loomis and Cann, 1982; Williams, 1995). A
evelopmental transition occurs as cells are completing
ggregation. Increasing concentrations of extracellular
AMP (Abe and Yanagisawa, 1983) and other signals medi-
te the down-regulation of gene products required for aggre-
ation and the induction of a variety of genes essential for
ostaggregative morphogenesis and cell-type differentiation
Mann and Firtel, 1987; Mehdy and Firtel, 1985; Schaap and
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an Driel, 1985; Town and Gross, 1978). Suspension assays
esigned to simulate multicellular development in vitro
how that the expression of one class of these genes, the
ostaggregative genes (e.g., LagC, CP2), requires only a
eriod of starvation followed by stimulation with high,
ontinuous cAMP, so that cell-surface receptors remain
aturated (Dynes et al., 1994; Mehdy and Firtel, 1985;
ehdy et al., 1983; Reymond et al., 1984). Prestalk-specific

e.g., ecmA, ecmB) and prespore-specific (e.g., SP60/cotB,
SP70/cotC) cells require cell–cell contacts and the morpho-
gen DIF or extracellular cAMP, respectively (Aubry and
Firtel, 1999; Berks and Kay, 1990; Fosnaugh and Loomis,
1991; Mehdy and Firtel, 1985; Mehdy et al., 1983; Williams,
1995; Williams et al., 1987). The expression of all of these
genes is dependent on GBF, a highly basic transcription
factor containing two predicted zinc fingers that bind to the
G-box, a conserved promoter element found upstream of
each gene (Dynes et al., 1994; Hjorth et al., 1989, 1990;
Schnitzler et al., 1994, 1995). Promoter mutational analyses
demonstrated a direct correlation between the ability to

bind GBF in vitro and promoter activity in vivo (Ceccarelli
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522 Brown and Firtel
et al., 1991; Datta and Firtel, 1987; Datta et al., 1987; Esch
et al., 1992; Fosnaugh and Loomis, 1993; Haberstroh and
Firtel, 1990; Haberstroh et al., 1991; Pears and Williams,
1987; Powell-Coffman and Firtel, 1994).

Cells in which the GBF locus is disrupted (gbf-null cells)
undergo developmental arrest at the loose-mound stage and
do not express postaggregative or cell-type-specific genes,
either in developing cells or when stimulated with cAMP in
suspension assays (Schnitzler et al., 1994). Expression of
GBF from the constitutive Actin 15 (Act15) promoter in
gbf-null cells complements the developmental phenotype.
However, although GBF protein isolated from vegetative
cells of this strain is able to bind G-boxes in an electro-
phoretic mobility shift assay, induction of GBF-target genes
is dependent on stimulation with extracellular cAMP
(Brown et al., 1997; Schnitzler et al., 1995). Overexpression
of GBF in a variety of strains containing gene disruptions in
signaling components suspected of being involved in
cAMP-stimulated GBF activity reveals that cell-surface
cAMP receptors (cAR1 or cAR3) are required for function
(Schnitzler et al., 1995). Surprisingly, GBF activation does

ot require the only known Gb-subunit found in Dictyo-
telium (Lilly et al., 1988; Wu et al., 1995) or the Ga

subunit Ga2 (Kumagai et al., 1991), which is coupled to
AR1 during aggregation and mediates activity of adenylyl
yclase and chemotaxis, indicating that the GBF pathway is
-protein-independent (Schnitzler et al., 1995). Other
-protein-independent events are stimulated by increased

AMP at the mound stage as well, including the phosphor-
lation and nuclear translocation of the Dictyostelium
TAT homologue DdSTATa (Araki et al., 1998; Kawata et
l., 1997).
To further characterize the function of GBF, we have

reated a series of deletion mutants of the protein. This
nalysis has identified regions of the protein required for
ither DNA binding in vitro or in vivo complementation of
he gbf-null phenotype. Expression of some mutant pro-
eins in gbf-null cells results in partial complementation,
uggesting that these hypomorphic alleles may preferen-
ially activate only a subset of GBF-target genes. We found,
nexpectedly, that GBF function requires only one intact
inc finger and that either zinc finger will suffice. In
ddition, we have examined the regulation of GBF expres-
ion. GBF is present at low levels in vegetative cells and,
ike GBF-target genes, is rapidly up-regulated upon stimu-
ation with micromolar cAMP. This led to the proposal that
BF induces its own high-level expression via an auto-

ctivation loop. We have isolated the GBF promoter and
sed lacZ and luciferase fusions to demonstrate that the
resence of GBF protein is not required for the normal
nduction of GBF promoter activity. Finally, we have mea-
ured the activity of the GBF promoter in a variety of
utant backgrounds and found that, like the cAMP-
ediated stimulation of GBF activity, GBF promoter induc-

ion is cAMP-receptor-dependent but does not require Gb.
Results from additional experiments indicate that GBF

induction requires neither intracellular cAMP nor LagC, a

Copyright © 2001 by Academic Press. All right
ell-surface molecule previously shown to play a role in the
aintenance of GBF expression during the later stages of
ulticellular development (Sukumaran et al., 1998).

MATERIALS AND METHODS

Cell Culture Conditions and Transformation of
Dictyostelium Cells, lacZ Staining, and General
Molecular Biology

We used the axenic strain KAx-3 (Mann and Firtel, 1991) as a
wild-type strain for all experiments except those that required
auxotropic selection with thymidine, in which we used JH10
(Hadwiger and Firtel, 1992). Methods for Dictyostelium culture,
development, DNA or RNA isolation (Nellen et al., 1987), electro-
poration (Dynes and Firtel, 1989), lacZ staining (Dingermann et al.,
1989; Haberstroh and Firtel, 1990; Powell-Coffman and Firtel,
1994), fast- and slow-shake experiments (Mehdy et al., 1983;
Mehdy and Firtel, 1985), and hybridization (Powell et al., 1992)
have been previously described.

Construction of GBF Mutants

A double-stranded oligonucleotide containing a 6X His tag
followed by a BamHI site was inserted into the EcoRI site just
downstream of the GBF start codon in the R20 plasmid (Schnitzler
et al., 1994). We created N-terminal deletion mutants by exonucle-
ase III digestion after linearizing with BamHI. We made C-terminal
deletions with appropriate stop codons by PCR and confirmed
them by DNA sequencing. Point mutations were created by using
the Transformer Site-Directed Mutagenesis Kit (Clontech). We
constitutively expressed mutant cDNAs in Dictyostelium using
the extrachromosomal expression vector DEP-j (K. Zhou and
R.A.F., unpublished observations).

Extract Preparation and Mobility Shift Assays

We produced cytoplasmic extracts as previously described
(Schnitzler et al., 1994). We performed mobility shift assays as
escribed previously (Schnitzler et al., 1994) with the following

modifications. Each 20-ml reaction contained 0.15 ng labeled CP2
43-mer probe (Hjorth et al., 1989), 1 mg/ml BSA, 400 ng poly[dI-C]
along with the appropriate volume of extract for 1 mg total protein.
Unlabeled competitor DNA (5 ng), where indicated, was added
prior to addition of cytoplasmic extract.

GBF Promoter Cloning

We isolated 2.4 kb of GBF upstream promoter sequence by
homologous integration of the plasmid pUCBsr (Sutoh, 1993) into
the GBF locus followed by plasmid rescue into Escherichia coli by
using a previously mapped genomic HindIII site (Schnitzler et al.,
1994). To accomplish this, we constructed, a “head-to-tail” GBF
cDNA plasmid, which, when linearized, produces the integration
fragment shown in Fig. 5. First, we subcloned the 1.7-kb KpnI
fragment of R20 into pUCBsr so the 39 end of the cDNA was closest
to the pUC118 backbone. We used PCR to amplify a 700-bp portion
of GBF cDNA closer to the 59 end. We subcloned this fragment
using PCR-generated EcoRI ends into the plasmid so that 1.0 kb of

the GBF sequence was replaced. We performed restriction mapping

s of reproduction in any form reserved.
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523Structure/Function Studies of GBF
to confirm that the 59-most end of the PCR fragment was adjacent
o the 39-most end of the remaining EcoRI–KpnI GBF fragment. The

plasmid was linearized by using a PCR-generated ClaI site at the
GBF 59/39 junction point and transformed into KAx-3 cells. We
selected transformants in HL5 medium using 15 mg/ml blasticidin.
We cloned resistant strains on SM plates in association with
Klebsiella aerogenes. Clones displaying the expected gbf-null phe-
notype (Schnitzler et al., 1994) were confirmed by Southern blot-
ing. Genomic DNA was isolated from an appropriate clone, cut
ith HindIII, self-ligated, and transformed into E. coli. Plasmid

DNA was isolated and confirmed by restriction mapping. The
sequence of the GBF promoter is GenBank accession no. AF337815.

Luciferase Integration into the Locus

We ligated a 1.1-kb BglII–XbaI GBF promoter fragment (created
by exonuclease III digestion), the luciferase ORF [cut out of
pSP60/luciferase (Haberstroh and Firtel, 1990; Mann et al., 1998)
with SpeI–KpnI], and a KpnI–BamHI Dictyostelium Actin 8 termi-
nator fragment into pSP72 (Promega). Into this plasmid, cut with
HindIII and XhoI, we ligated a HindIII–BamHI fragment containing
the Thy1 gene (Dynes and Firtel, 1989) and a 1.5-kb fragment of
GBFD10–115 cDNA with BamHI and XhoI ends. The entire integra-
tion cassette was released with BglII and XhoI, transformed into
JH10 cells, and selected for growth in the absence of exogenous
thymidine. We confirmed clones displaying the expected gbf-null
phenotype by Southern blotting.

Luciferase Assays

We performed all luciferase assays using the Luciferase Assay
System (Promega). For each treatment, we pelleted approximately
1.5 3 107 cells and resuspended them in 100 ml 13 Cell Lysis
Buffer, supplemented with 13 Complete, EDTA-free protease
nhibitors (Roche) and 1 mM NaVO4. We aliquoted two 10-ml
olumes of each sample into a 96-well PolySorp FluoroNunc plate
Nunc) and measured light units after addition of 50 ml Luciferase
ssay Substrate using an EG&G Berthold Microplate Luminometer

LB 96V). We normalized luciferase activity values by the total
rotein concentration of each extract as determined by Bio-Rad
rotein assay. We performed each experiment at least three times
sing at least two independent transformed populations.

Construction of a cAR1/cAR2/cAR3 Deletion
Strain

To create this strain, we disrupted the cAR2 gene in a cAR1/
cAR3 strain (Insall et al., 1994). To construct the cAR2 disruption
cassette, a 59 fragment of the cAR2 cDNA was PCR amplified by
using the primers GTTTTGGATCCCAGATATTATCGCA-
CAAAG and GTTTTTCTAGACTATACCCATCATAGTTATC.
A 39 cAR2 cDNA fragment was PCR amplified by using the primers
GTTTTAAGCTTCATTTGGGGAACATCAGC and GTTTTGG-
TACCGAGCATTCTTTGATCTC (all primer sequences are
shown 59 to 39). Each PCR product was digested with the appropri-
ate restriction enzyme (underlined in primer sequence) and ligated,
along with the blasticidin resistance cassette [released from
pUCBsrDBam (Sutoh, 1993) with XbaI and HindIII], into pSP72
(Promega Life Sciences, Madison, WI) digested with BamHI and
KpnI. The disruption cassette, consisting of the blasticidin resis-
tance cassette flanked by cAR2 cDNA fragments, was released

from pSP72 by digestion with BamHI and KpnI and electroporated

Copyright © 2001 by Academic Press. All right
into cAR1/cAR3-null cells. We confirmed cAR2 disruption in
blasticidin resistant colonies by Southern blot.

RESULTS

Mutational Analysis of GBF

To functionally characterize the GBF protein, we carried
out a detailed mutational analysis. We constructed a col-
lection of mutants (Fig. 1) using exonuclease III digestion,
PCR, and oligonucleotide-directed mutagenesis as de-
scribed in Materials and Methods. Each mutant was tested
for its ability to function in an electrophoretic mobility
shift assay (EMSA; Figs. 1 and 2) and to complement the
gbf-null phenotype when expressed from the Act15 pro-
moter (Figs. 1 and 3). Previous experiments revealed that
constitutive expression of either full-length GBF or GBFDI,
which contains an internal deletion of the Gln/His-rich
domain, results in a nearly wild-type phenotype (Mann et
l., 1997; Fig. 3). We found that GBFDI binds DNA properly,

although the size of the mobility shift is decreased due to
the reduction in the size of the protein (Mann et al., 1997;
Fig. 2). As we show in Fig. 2, many of the deletions
examined were able to bind a G-box-containing oligonucle-
otide in vitro and exhibited a reduction in mobility shift
that was related to the size of the mutant protein.

Because the Gln/His domain deletion did not affect GBF
function, all mutants constructed subsequently did not
contain this region. Deletion of protein sequence between
residues 10–77 (GBFD10–77) did not affect the ability to
omplement the mound-arrest phenotype of gbf-null cells,
lthough the mature fruiting bodies were slightly deformed,
ith the spore mass often found just below the top of the

talk (Fig. 3). However, further deletion to residue 115
esulted in a dramatic alteration in phenotype. Terminally
eveloped gbf-null cells expressing GBFD10–115 arrest as

mounds with elongated tips (Fig. 3). This partial comple-
mentation suggests that, although GBFD10–115 must be able
o activate at least a subset of GBF-induced genes required
or postaggregative development, it either fails to induce
thers or does not induce them to the correct level. Alter-
atively, misexpression of one or more GBF target genes
ould lead to secondary effects that yield the observed
henotype. To examine these possibilities, we assayed the
bility of several GBF mutants to activate the expression of
he GBF-regulated genes LagC and CP2. We found that, like
BFDI, GBFD10–77 is able to induce both target genes (Fig. 4).

However, GBFD10–115 activates LagC, but not CP2 (Fig. 4).
lthough the level of LagC expression is reduced, if the

evel of CP2 expression is reduced equivalently, we would
ave detected it by Northern blot analysis. Expression of
BFD10–283 in gbf-null cells leads to a phenotype similar to

hat of GBFD10–115 (data not shown), but deletion of addi-
tional residues to give GBFD10–338 results in a complete
nability to progress beyond the mound stage (Fig. 3) or
nduce either LagC or CP2 (Fig. 4). Even though GBFD10–338 is
deleted to nearly the predicted beginning of the first zinc-

s of reproduction in any form reserved.
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524 Brown and Firtel
finger domain, this protein still displays sequence-specific
DNA binding in an EMSA (Fig. 2). The DNA-binding
affinity of GBFD10–338 may be reduced, as the mRNA expres-
sion level of all mutants tested was roughly equivalent (data
not shown).

Deletion of protein sequence from the C terminus of GBF
yielded a surprising result. Removal of the C-terminal 33%
of the protein GBFD472–708, including the second zinc finger,
does not abolish the function of the protein. gbf-null cells
expressing this mutant form fully developed, albeit some-
what smaller, fruiting bodies (Fig. 3). However, we detected
no gel-shift activity in extracts made from these cells (data
not shown). This was not entirely unexpected; insertion of
an auxotrophic marker into the GBF locus at a site between
the two zinc fingers does not result in an obvious mutant
phenotype, although no GBF gel shift activity is detectable
in this strain (G. R. Schnitzler and R.A.F., unpublished
observations). Site-directed mutagenesis of conserved cys-
teine residues in either zinc-finger domain produced similar
results. Constitutive expression of either an N-terminal

FIG. 1. Schematic representation of GBF deletion mutants. Mutan
of each protein to bind to a 43-bp G-box-containing CP2 promoter f
igs. 2 and 3 for more detail).
zinc finger mutant (GBFC344G; Fig. 3) or a C-terminal zinc

Copyright © 2001 by Academic Press. All right
nger mutant (GBFC483,486G; data not shown) fully restores
the ability to develop fruiting bodies. However, neither
GBFC344G, GBFC483,486G, nor a combination of the two proteins
is able to bind DNA in vitro (Fig. 2). Expression of a mutant
containing a larger C-terminal deletion (GBFD400–708) results
in a partial complementation similar to that of GBFD10–115

(Fig. 3). Like GBFD10–115, GBFD400–708 is able to induce the
expression of LagC (at a reduced level), but not CP2 (Fig. 4).
Deletion of a slightly smaller portion of the C terminus
(GBFD532–708) does not disrupt gel shift activity (Fig. 2).
Combining the first zinc finger mutation with the large
C-terminal deletion (GBFC344G/D472–708) results in a complete
inability to complement gbf-null cells (Fig. 3). Taken to-
gether, the results indicate that only one zinc finger domain
is necessary for GBF function in vivo and that either zinc
finger is sufficient. Mutants containing both N-terminal
and C-terminal deletions suggest some functional redun-
dancy between the two ends of the protein. Whereas
GBFD10–59/472–708 (Fig. 3) is able to form fruiting bodies,

ere constructed as described in Materials and Methods. The ability
ent or complement the gbf-null cell phenotype is summarized (see
ts w
ragm
GBFD10–77/472–708 (Fig. 3) only forms mounds with extended

s of reproduction in any form reserved.
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525Structure/Function Studies of GBF
tips, revealing that, in the absence of residues 472–708,
amino acids 59–77 are required for terminal development.

Previous studies indicated that functional GBF binding
sites require two intact DNA half-sites (Haberstroh et al.,

FIG. 2. Electrophoretic mobility shift assay of GBF deletion m
constitutively expressing various GBF mutants were prepared from
prepared from cells developed for 5 h. The probe contains a 43-bp po
in vivo. Competitor reactions contain a 25-molar excess of unla
experiment; some unrelated lanes have been removed.
991; Hjorth et al., 1989, 1990; Pears and Williams, 1987, N

Copyright © 2001 by Academic Press. All right
988). Given the unexpected finding that only one zinc
nger is required for function in vivo, we examined
hether GBF binds DNA as a homodimer. Cytoplasmic

xtracts from wild-type cells expressing either an

ts. Cytoplasmic extracts of wild-type (KAx-3) or gbf-null cells
tatively growing cells. Wild-type and gbf-null control extracts were

of the CP2 promoter that is required for GBF-regulated expression
d probe DNA. All lanes in either (A) or (B) are from the same
utan
vege
rtion
belle
-terminal (GBFD10–283) or C-terminal mutant (GBFD532–708),

s of reproduction in any form reserved.



526 Brown and Firtel
FIG. 3. Complementation of gbf-null cells with various deletion mutants. The terminal developmental phenotype (.26 h) of each strain
is shown. All GBF mutants shown are expressed in gbf-null cells from the constitutive Actin 15 promoter. All pictures were taken at the

same magnification.

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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527Structure/Function Studies of GBF
each of which is capable of binding DNA, were examined by
EMSA. In both cases, we observed a band of the expected
size for both full-length GBF and the constitutively ex-
pressed mutant (Fig. 2). However, we detected no bands of
intermediate size, which would signify the formation of
dimeric molecules.

Isolation of the GBF Promoter

The previous observation that GBF mRNA levels and
DNA-binding activity are very low during vegetative
growth and early aggregation and then increase rapidly
upon mound formation or in vitro stimulation with cAMP
suggested that GBF expression may be regulated by an
auto-induction loop (Hjorth et al., 1989; Schnitzler et al.,
1994). To test this hypothesis, we wished to compare the
activity of the GBF promoter in wild-type and gbf-null cells.
We isolated 2.4 kb of sequence upstream of the GBF start
codon using the approach diagrammed in Fig. 5 and de-
scribed in Materials and Methods. Studies using purified
prestalk and prespore cell populations previously revealed
that GBF DNA-binding activity is present in both cell types
(Schnitzler et al., 1994). Fusion of the cloned 2.4-kb GBF
promoter fragment to the E. coli lacZ gene (GBF/lacZ)
confirmed this result. Expression of GBF/lacZ during the
slug stage of development is seen throughout the organism
(data not shown).

GBF Promoter Activity Does Not Require the
Presence of GBF Protein

We undertook several lines of experimentation to deter-

FIG. 4. GBF mutants differentially direct target gene expression.
gbf-null cells expressing mutant GBF proteins (as indicated) that
are able to complement the mound-arrest phenotype to various
extents (see text for details) were examined for the ability to induce
LagC and CP2. Each strain was washed free of nutrients and starved
in suspension for 30 min. The cultures were then split and treated
(1) or not treated (2) with 300 mM cAMP for 90 min. Total mRNA
was harvested, size separated, and probed with LagC and CP2. An
rRNA band that hybridizes nonspecifically with CP2 mRNA can be
distinguished by its equal intensity in the presence or absence of
cAMP.
mine whether GBF protein is required for the induction of

Copyright © 2001 by Academic Press. All right
BF expression to wild-type levels. First, we constructed a
ew gbf-null strain that contains a homologous insertion or
Knock-In” of the luciferase gene into the GBF locus
gbf/luciferase-KI; Fig. 6A). This strain displays a develop-

ental phenotype identical to those of other gbf-null
trains and is rescued by constitutive expression of GBFDI
Fig. 6B; Schnitzler et al., 1994). Comparison of GBF mRNA
nduction in wild-type cells to luciferase mRNA induction
n gbf/luciferase-KI produced a similar profile in suspension
ssays (Fig. 6C). Expression of both genes gradually rises
ver 5 h of starvation and increases substantially upon
timulation with 300 mM cAMP. We did not observe this

increase in the absence of cAMP treatment.
Luciferase activity in gbf/luciferase-KI cells and gbf-null

ells transformed with a reporter construct containing the
loned GBF promoter fused to the luciferase gene (GBF/
uciferase) revealed a similar increase over the first 12 h of
evelopment, when both strains undergo mound arrest (Fig.
D). These data indicate that the cloned and endogenous
BF promoters are regulated similarly. We compared the

ctivity of the GBF/luciferase reporter cassette in wild-type

FIG. 5. GBF promoter cloning strategy. pUCBsrDBam was inte-
grated into the GBF ORF by homologous recombination. A HindIII
site 2.4 kb upstream of the GBF open reading frame was used for
plasmid rescue. Construction of the integration cassette is de-

scribed in Materials and Methods.

s of reproduction in any form reserved.



528 Brown and Firtel
FIG. 6. Construction of GBF/luciferase KI. (A) A cassette containing the luciferase gene, 2H3 terminator, and the Thy selection cassette
was integrated into the GBF locus. A 1.1-kb fragment of GBF promoter sequence and a 1.8-kb fragment of GBF cDNA were used for
homologous recombination. Construction of the cassette is described in Materials and Methods. (B) Successful integration resulted in the
mound-arrest phenotype characteristic of gbf-null cells. Constitutive expression of GBFDI restored the ability to develop fruiting bodies. All
pictures are of terminal development. (C) In vitro suspension assays were used to examine the cAMP-induced expression of genes at the
GBF locus. Wild-type GBF induction was compared to luciferase in gbf/luciferase-KI cells. Cells of each strain were washed, starved for 5 h,
and treated (1) or not treated (2) with 300 mM cAMP for 5 h. Total mRNA harvested from each sample was size separated and probed with

the appropriate gene.

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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529Structure/Function Studies of GBF
and gbf-null cells in vitro (Fig. 7A). Cells were pulsed for 4 h
ith 30 nM cAMP to induce the expression of aggregation-

tage gene products, followed by stimulation with 300 mM
cAMP for 2 h (Insall et al., 1994; Schnitzler et al., 1994). In

ild-type cells, expression of GBF/luciferase increases ;3-
old in response to pulsing and an additional 4-fold upon
timulation with 300 mM cAMP. In the absence of 300 mM

cAMP treatment, we observed little further increase. We
found a similar induction of GBF/luciferase in gbf-null
ells, although moderately higher expression occurs in the
bsence of cAMP (Fig. 7A). Finally, we examined the
xpression of lacZ driven by the GBF promoter in gbf-null
ells. Although these cells arrest at the mound stage due to
he absence of GBF, b2galactosidase activity is clearly

FIG. 7. Activity of GBF/luciferase in various genetic backgrounds.
AMP in suspension for 4 h and starved an additional 2 h with or w

total protein concentration of each sample and shown relative to
high, continuous cAMP. (D) Cells were developed on phosphate-bu
detected after 12 h of development (data not shown).

Copyright © 2001 by Academic Press. All right
GBF Promoter Activity in Signaling Mutant Strains

Unlike that of other postaggregative genes, such as LagC
and CP2 (Aubry and Firtel, 1999), GBF promoter activity in
signaling mutant strains does not require GBF protein
activity. Therefore, a different regulatory pathway must
control its expression. To identify components involved in
GBF induction, we transformed the GBF/luciferase reporter
construct into strains containing null mutations in signal-
ing molecules known to be important for Dictyostelium
development. Expression of GBF/luciferase in car1/car3-
null cells (Insall et al., 1994), in which the genes encoding
the aggregation-stage cAMP receptors cAR1 and cAR3 have
been deleted, is substantially reduced compared to expres-

) Strains transformed with GBF/luciferase were pulsed with 30 nM
ut 300 mM cAMP. Luciferase activity values are normalized by the
-h pulsed value to emphasize the induction upon treatment with
d agar for 12 h, when both strains underwent mound-stage arrest.
(A–C
itho

the 4
sion in wild-type cells (Fig. 7B). We observed only a slight

s of reproduction in any form reserved.
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530 Brown and Firtel
increase after 4 h of pulsing, and addition of 300 mM cAMP
resulted in a ,2-fold increase. This is likely to be due to a
low level of cAR2, another cAMP-receptor isotype expected
to be present after several hours of starvation (Saxe III et al.,
1993). To address this possibility, we constructed a strain in
which cAR1, cAR2, and cAR3 are disrupted. Expression of
GBF/luciferase in this strain is completely absent, in re-
sponse to pulses or high, continuous concentrations of
cAMP (Fig. 7B). Constitutive expression of cAR1 in car1/
car3-null cells fully restores the ability to express GBF/
uciferase at wild-type levels (Fig. 7B). Our results strongly
uggest that the cAMP-induced increase in GBF expression
s mediated by cell-surface receptors.

We measured GBF/luciferase activity in gb-null cells,
hich are deficient in the only known Dictyostelium Gb

subunit (Fig. 7A; Lilly et al., 1988; Wu et al., 1995).
cAMP-induced expression in this strain is virtually identi-
cal to that seen in wild-type cells, indicating that, like the
cAMP-mediated stimulation of GBF protein activity, induc-
tion of GBF expression is G-protein-independent. LagC,
which encodes a cell-surface molecule required for continu-
ous, high-level expression of GBF throughout later develop-
ment (Dynes et al., 1994; Sukumaran et al., 1998), is also
not required for the initial induction of GBF (Fig. 7A).

Finally, we examined the role of cAMP-dependent pro-
tein kinase (PKA) in GBF induction. PKA is required for
numerous aspects of Dictyostelium development, includ-
ing aggregation, prespore gene expression, and sporulation
(reviewed in Aubry and Firtel, 1999; Loomis, 1998). Previ-
ous results indicated that both GBF DNA-binding activity
and GBF-mediated gene expression are functional in cells
containing a deletion of the PKA catalytic subunit gene
(pka-cat null; Mann et al., 1997). To further investigate the
role of intracellular cAMP in GBF expression, we studied
aca-null cells, which do not contain the primary
aggregation-stage adenylyl cyclase ACA. We observed no
significant difference in GBF/luciferase activity in this
strain (Fig. 7C). Constitutive expression of PKA-cat in
aca-null cells does not significantly affect GBF promoter
activity compared to aca-null cells and does not alter
GBF/luciferase expression in the absence of cAMP stimu-
lation (Fig. 7C), providing further evidence that PKA does
not play an important role in GBF induction.

DISCUSSION

Mutational Analysis of GBF

As Dictyostelium cells complete aggregation, increasing
cAMP concentrations stimulate the activity of GBF, a
transcription factor required for high-level expression of
genes involved in postaggregative development. GBF does
not confer spatial or temporal specificity, but likely acts in
concert with other factors that respond to localized signals
and contribute this information. We have analyzed the

function and transcriptional regulation of GBF to facilitate m
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ur understanding of the developmental transition from
ggregation to morphogenesis.
Mutational analysis has identified several functional and

onessential domains within the GBF protein. Deletion of
mino acids 10–77 or 532–708 does not affect the ability of
BF to complement the gbf-null phenotype or bind a
-box-containing oligonucleotide in vitro. However, dele-

ion of additional residues (residues 77–115 or 400–532)
reates a hypomorphic allele. gbf-null cells expressing these
lleles form tight mounds with elongated tips and are able
o induce the expression of LagC, but not CP2, in response
o cAMP in a cell suspension assay. The results suggest that
ifferent domains of the GBF protein may be required for
he transcriptional activation of subsets of target genes. The
eleted portions of the protein are most likely required for
hysical interaction with other transcriptional activators or
oactivators specific to the misregulated genes. Alterna-
ively, the in vivo binding affinity of the mutant proteins
ay be altered to various extents, which could differen-

ially affect the activation of GBF-dependent genes. Results
rom additional studies indicated that deletion of the region
etween amino acids 283 and 338 causes an inability to
rogress past the mound arrest stage observed in gbf-null
ells. This mutant exhibits sequence-specific DNA binding
n vitro, suggesting that the deleted domain is required for
ranscriptional activation. Examination of GBF mutants
ontaining deletions of both N- and C-terminal sequences
evealed some functional overlap. Residues 59–77 were
nly required for fruiting body formation in the absence of
mino acids 532–708. There is no direct sequence conser-
ation between these two parts of the protein, although
oth contain a high proportion of serine and threonine
esidues.

As expected, point mutations in conserved cysteine resi-
ues predicted to be required for folding of the zinc finger
omains or deletion of the C-terminal zinc finger cause a
oss of DNA binding in vitro. It was surprising, however, to
nd that, when the zinc finger mutants are expressed in
bf-null cells, the mound arrest phenotype is comple-
ented, indicating that these proteins retain in vivo func-

ion. Although we cannot exclude the possibility that the
inc finger mutants function independent of DNA binding,
e consider this unlikely, given the evidence supporting

he model that direct binding of wild-type GBF to promoter
lements is required for the expression of cAMP-stimulated
ostaggregative genes. Deletions or point mutations in
-boxes in the CP1, CP2, and SP60/cotC promoters that
isrupt GBF binding in vitro cause a substantial reduction
n gene expression in vivo (Ceccarelli et al., 1991; Datta and
irtel, 1987; Datta et al., 1987; Esch et al., 1992; Fosnaugh
nd Loomis, 1993; Haberstroh and Firtel, 1990; Haberstroh
t al., 1991; Pears and Williams, 1987; Powell-Coffman and
irtel, 1994). In addition, gbf-null cells do not express these
enes, either during development or in response to cAMP in
uspension cultures (Schnitzler et al., 1994, 1995). Finally,
BF protein synthesized in vitro causes the same size

obility shift in an EMSA as the GBF activity present in
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cellular extracts, favoring the notion that GBF binds DNA
directly and not via accessory proteins (Schnitzler et al.,
1994). Although in both of these cases the basal transcrip-
tion apparatus could participate in DNA binding, this
would not account for the observed sequence specificity.

We expect that the disruption of one zinc finger causes a
reduction in the affinity of GBF for G-boxes that prevents
DNA binding in vitro, but potential cooperative interac-
tions with locus-specific factors may stabilize DNA binding
activity in vivo, allowing the induction of GBF-regulated
genes. The 43-bp portion of the CP2 promoter used in our
gel shift assays contains only an isolated GBF binding site
(Hjorth et al., 1989). Such isolated GBF response elements
do not direct transcription in vivo and presumably function
only in context with other required cis elements (Pears and
Williams, 1988). Our finding that some GBF mutants are
only able to activate subsets of target genes supports this
hypothesis. The regulatory activity of the mammalian
erythropoeic factor GATA-1 is modulated in such a manner
(Mackay and Crossley, 1998). DNA binding occurs via the
C-terminal zinc finger of GATA-1, whereas the N-terminal
zinc finger is primarily utilized for a variety of protein–
protein interactions that influence the regulatory activity of
GATA-1 (Crossley et al., 1995; Fox et al., 1999; Mackay and
Crossley, 1998; Osada et al., 1995; Tsang et al., 1997;
Visvader et al., 1995). We expect that similar protein–
protein interactions are important for the ability of GBF to
activate postaggregative and cell-type-specific genes with
the correct spatial and temporal specificity. However, our
data suggest that these interactions are more likely to
depend on domains other than the zinc fingers of GBF.
Finally, although mutational analyses of GBF-regulated
promoters indicate that two intact CA/GT-rich half-sites
are required for GBF binding and transcriptional activation,
we have found no evidence of dimer formation in cells
coexpressing wild-type GBF and an N- or C-terminal dele-
tion mutant. This result supports the model in which, in
vivo, a single molecule of wild-type GBF binds to a G-box,
with each zinc finger interacting with a half-site. As dis-
cussed above, stabilizing interactions with other factors
likely allow a similar binding topology for GBF zinc-finger
mutants. However, we cannot exclude the possibility that
disruption of one zinc finger alters the stoichiometry of
GBF binding to the G-box, as these mutants were not
detectable by EMSA.

Regulation of GBF Expression

The increase in GBF transcription in response to rising
cAMP concentrations in mounds is a key step in postaggre-
gative development. Our finding that GBF promoter-
directed transcription does not require the presence of GBF
protein demonstrates that this increase is not due to a
GBF-mediated auto-induction loop, as previously hypoth-
sized. We attempted to identify components of the GBF
nduction pathway by assaying the activity of GBF
promoter/luciferase fusions in a variety of mutant back-

Copyright © 2001 by Academic Press. All right
rounds. As expected, the cAMP-stimulated GBF expres-
ion is absent in cAR1/cAR2/cAR3-null cells and fully

restored by constitutive expression of cAR1 in cAR1/cAR3-
null cells. These observations indicate that GBF induction
is receptor-dependent, although we cannot rule out the
possibility that this effect is indirect, owing to the absence
of one or more pulse-induced factors. In either case, the
cAMP-stimulated signaling pathway that induces GBF ex-
pression must be at least partially distinct from that which
causes GBF protein activation; there is a branch somewhere
downstream of the cAMP receptor.

As in previous studies aimed at finding signaling compo-
nents essential for GBF protein activation, other key regu-
lators are elusive. GBF/luciferase activity in gb-null cells is
omparable to that observed in wild-type cells, ruling out
nvolvement of G-proteins in this pathway. This adds to the
rowing list of cAMP-receptor-dependent responses in Dic-
yostelium that do not require G-proteins, including the
timulation of GBF activity (Schnitzler et al., 1995), the
ctivation of MAP kinase (ERK2) activity (Maeda et al.,
996), the phosphorylation, dimerization, and nuclear lo-
alization of DdSTATa (Araki et al., 1998), and cAMP-
timulated Ca21 influx (Milne et al., 1995). The universal
mportance of G-protein-independent signaling events regu-
ated by serpentine receptor stimulation has been high-
ighted by the recent description of such pathways in higher
ukaryotes, including mammalian cells (reviewed in Hall et
l., 1999). Instead of coupling to G-proteins, the serpentine
eceptors that control these pathways signal via other types
f signaling molecules, such as small G-proteins (Mitchell
t al., 1998), SH2-domain-containing proteins (Karoor et al.,
998; Marrero et al., 1998; Venema et al., 1998) and
-protein-coupled receptor kinases (Carman et al., 1998;
aga et al., 1998; Luttrell et al., 1999; Pitcher et al., 1998;
remont et al., 1998). At least one member of each of these
lasses of proteins is essential for proper Dictyostelium
ulticellular development (Mohanty et al., 1999; Tux-
orth et al., 1997; Briscoe et al., 2001) and may play

prominent roles in these newly identified pathways.
Preliminary mutational analysis of the GBF promoter indi-

cates ;700–800 bp upstream of the GBF start codon are
essential for expression in vitro. This region contains two
CA-rich half-sites that conform to the G-box consensus,
suggesting that another unknown G-box factor(s) may recog-
nize these cis elements. If this is so, this factor(s) cannot
replace GBF in the context of most postaggregative and
cell-type-specific promoters. It is also possible that these are
sites of negative regulation by GBF or that they are nonfunc-
tional and GBF expression is mediated by as-yet-unrecognized
cis elements. Further GBF-promoter mutational analyses may
reveal the nature of GBF transcriptional regulation.
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