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Protein Tyrosine Phosphatase PTP1 Negatively
Regulates Dictyostelium STATa and Is Required
for Proper Cell-Type Proportioning
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The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an
important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal,
while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been
characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1
activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion
of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine
phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is
overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs.
In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also
a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in
forming the subset of prespore cells that are located in the anterior prespore region. © 2001 Academic Press
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INTRODUCTION

When food sources are exhausted, Dictyostelium single-
celled amoebae aggregate in response to extracellular cAMP
pulses to form an organised multicellular structure. Cells
within the aggregate differentiate to produce prespore and
prestalk cells, the precursors of spores and stalk cells,
which sort to give a defined spatial pattern in the migratory
slug (reviewed in Aubry and Firtel, 1999). When conditions
are suitable for culmination, terminal differentiation is
initiated resulting in a fruiting body consisting of a spore-
containing sorus supported by a rigid, slender stalk.
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The changes in signaling that accompany the unicellular
to multicellular transition and the onset of cellular differ-
entiation include significant changes in the level of phos-
phorylation of p-Tyr-containing proteins (Schweiger et al.,
1990; Howard et al., 1992). These changes are regulated by
at least eight protein tyrosine kinases (PTKs) and three
protein tyrosine phosphatases (PTPs) (Tan and Spudich,
1990; Howard et al., 1992, 1994; Ramalingam et al., 1993;
Adler et al., 1996; Gamper et al., 1996; Nuckolls et al.,
1996; Kim et al., 1999; R. Firtel and J. G. Williams,

npublished data). None of the PTKs is closely related to
hose of higher cells. Spl1 is a dual specificity kinase
Nuckolls et al., 1996), while DPYK3, DPYK4, and ZAK1
ach have two candidate tyrosine kinase domains but do
ot otherwise resemble Janus kinases (JAKs) (Adler et al.,
1996; Kim et al., 1999). ptp1, ptp2, and ptp3 encode devel-
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234 Early et al.
opmentally regulated, nonreceptor PTPs (Howard et al.,
992, 1994; Gamper et al., 1996). The analysis of mutant
trains either lacking or overexpressing ptp1, ptp2, or ptp3
uggests that they regulate distinct cellular pathways
Howard et al., 1992, 1994; Gamper et al., 1996). PTP1,
nlike PTP2 and PTP3, regulates the level of actin tyrosine
hosphorylation (Howard et al., 1993), while PTP3 func-
ions as part of the response to osmotic shock (Gamper et
l., 1999).
Dictyostelium, like metazoans, utilises STAT transcrip-

ion factors to control aspects of multicellular development
nd cell-type differentiation (Kawata et al., 1997). STATs
re SH2 domain-containing transcription factors that were
nitially identified as targets of cytokine signaling in mam-

alian cells (reviewed in Ihle and Kerr, 1995; Schindler and
arnell, 1995; Leaman et al., 1996; Darnell, 1997; Horvath

nd Darnell, 1997). STATs are activated in response to
igand binding to a cell-surface receptor by phosphorylation
f a conserved tyrosine residue, which rapidly leads to
TAT homo- or heterodimerization and translocation to
he nucleus. In mammalian cells, both receptor tyrosine
inases and Janus kinases (JAKs) phosphorylate STATs. The
ictyostelium STAT protein, STATa, is activated in re-

ponse to extracellular cAMP signaling functioning through
erpentine, cell-surface receptors via a G-protein-
ndependent pathway (Kawata et al., 1997; Araki et al.,

1998). There is evidence for similar serpentine receptor, G-
protein-independent pathways of STAT activation in mam-
mals (reviewed in Williams, 1999).

The pattern of STATa nuclear enrichment during the
developmental phase is complex. It is detectable in the
nuclei of less than 10% of cells during growth and early
development, but is enriched in a rapidly increasing propor-
tion of nuclei during aggregation (Araki et al., 1998). At the
tight mound stage, STATa is present in the nuclei of all
cells but then is selectively lost from nuclei of all cells
except those in the tip of the slug. This pattern of STATa
nuclear enrichment is consistent with STATa’s genetically
defined role as a repressor that holds tip cells in a prestalk
state prior to the onset of terminal differentiation (Mohanty
et al., 1999). The tip cells in which nuclear STATa is
retained are a subset of the pstA cell population (Araki et
al., 1998). The anterior, prestalk region of the slug can be
divided into three domains, based on the expression pattern
of the marker genes ecmA and ecmB: the prestalk (pst) A
region at the front and the pstO region at the rear, in which
distinct regions of the ecmA promoter are active (Early et
al., 1993, 1995); and a core of pstAB cells in the centre of the
pstA region, where the stalk-specific ecmB gene is also
expressed (Jermyn and Williams, 1991). It is these pstAB
cells that mark the origin of the stalk tube.

Repressor elements that bind STATa in vitro have been
defined within the ecmB promoter (Kawata et al., 1996). In
wild-type slugs, a lacZ reporter construct driven by the
ecmB promoter is expressed only in the pstAB cells (Jermyn
and Williams, 1991). However, when the STATa-binding,

prestalk repressor element in the ecmB promoter is deleted,

Copyright © 2001 by Academic Press. All right
reporter expression is seen throughout the pstA domain. A
similar expanded pattern of expression is observed with a
reporter carrying the wild-type ecmB promoter expressed in
STATa null cells, supporting the model that STATa is an
essential component of the ecmB prestalk repressor (Mo-
hanty et al., 1999). STATa may also be required for gene
regulation at other stages of development. Paradoxically,
although STATa regulates commitment to stalk cell differ-
entiation, the STATa null mutant is not able to complete
the culmination process, and it has therefore been postu-
lated that there is a second, uncharacterised step in stalk
cell formation that requires STATa (Mohanty et al., 1999).
STATa has recently been shown to act as a transcriptional
activator of the cudA gene, expression of which is essential
for correct terminal differentiation (Fukuzawa and Wil-
liams, 2000).

In mammalian cells, the mechanisms responsible for
deactivation of STATs or JAKs have not been clearly
defined, but dephosphorylation, proteolytic degradation,
and negative regulatory factors, such as suppressor of cyto-
kine signalling (SOCS) and protein inhibitor of activated
STAT (PIAS) proteins, may each have a role (reviewed in
Starr and Hilton, 1999). There is evidence from inhibitor
studies that an as yet unidentified protein tyrosine phos-
phatase acts in the nucleus to dephosphorylate STAT1
directly (Haspel and Darnell, 1999). The PTPs most clearly
demonstrated to be involved in STAT regulation, SHP1 and
SHP2, are nonreceptor, SH2 domain-containing PTPs that
act predominantly by regulating JAK activity in the cytosol
(reviewed in Tonks and Neel, 1996). In this manuscript, we
examine the role of PTP1 in the regulation of Dictyoste-
lium STATa function during development. We find that the
level of PTP1 affects the degree of STATa activation at the
slug stage, and we demonstrate a role for PTP1 in negatively
regulating STATa tyrosine phosphorylation. In addition, we
show that PTP1 regulates the proportioning of prestalk and
prespore cells within the slug, via a pathway that may not
involve STATa.

MATERIALS AND METHODS

Dictyostelium Cell Culture

The cell strains used were as follows: the axenic strains KAx-3
and JH10, a thymidine auxotroph derived from KAx-3 (Mann and
Firtel 1991; Hadwiger and Firtel, 1992); the ptp1 null (Howard et
al., 1992); PTP1OE, a KAx-3-based strain that overexpresses the ptp1
DNA (Howard et al., 1992); PTP1C310S, a KAx-3-based strain

expressing a mutated version of ptp1 with a cysteine to serine
ubstitution at position 310; and the STATa null (Mohanty et al.,
999). ptp1 null and PTP1OE cell lines were made that additionally
ontain the following cell-type-specific markers (by cotransforma-
ion in the case of the cells lines overexpressing PTP1): ecmAO/
acZ, ecmB/lacZ, ecmA/lacZ (marking the pstA cells), ecmO/lacZ

(marking the pstO cells), SP60/lacZ (marking prespore cells), and
pspA/lacZ (also marking prespore cells) (Jermyn and Williams,
1991; Early et al., 1993, 1995; Haberstroh and Firtel, 1990; Detter-

beck et al., 1994). The ecmB/lacZ-marked PTP1OE was additionally

s of reproduction in any form reserved.
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235PTP1 and Dictyostelium STATa Regulation
created in an AX-background. ptp1 null cells were also transformed
ith pAct15/lacZ (Harwood and Drury, 1990). b-galactosidase

staining of these cell lines was performed as described previously
(Early et al., 1993). All cells were grown in HL5 medium (Watts and
Ashworth, 1970) at 22°C. The medium was supplemented with 200
mg/ml thymidine in the case of JH10, and with 20 mg/ml G418
for the lacZ-marked ptp1 null and for PTP1OE. PTP1OE was addi-
tionally selected at 80 mg/ml G418.

Immunohistochemical Staining

To obtain whole mounts, agar blocks with attached slugs were
submerged in ice-cold methanol for 10 min, and the slugs were
then transferred singly to poly-L-lysine coated slides. The primary
antibody used was either the anti-STATa mouse monoclonal
antibody D4, which recognises phosphorylated and nonphosphory-
lated STATa (Araki et al., 1998), or the affinity-purified rabbit
polyclonal antiserum SC9P. SC9P, which is specific for the phos-
phorylated form of STATa, was derived from SC9 total serum
following the procedure of Lewis et al. (1996). The slides were
secondarily incubated with preabsorbed FITC-conjugated goat anti-
mouse IgG antibody (Sigma) or Texas red-conjugated goat anti-
rabbit IgG antibody (Molecular Probes). The samples were mounted
and visualised with a Leica DMRBE confocal microscope (with
TCS-NT laser head) and the images were processed using NIH-
Image version 1.62.

For antibody staining of individual slug cells, the slugs were
dissociated by trituration through successively smaller syringe
needles, ending with 25G needles. The cells were allowed to settle
on poly-L-lysine-coated multiwell slides for 10 min, which were
hen dipped in ice-cold methanol for a further 10 min. The slides
ere incubated with the anti-PspA mouse monoclonal MUD-1

Krefft et al., 1983), followed by a FITC-conjugated goat anti-mouse
gG antibody (Sigma) preabsorbed against Dictyostelium cells.

MUD-1 positive cells were detected using the 1003 objective of an
inverted microscope (Leica model DMRBE).

Western Blotting and Immunoprecipitation

Immunoprecipitation was carried out using ascites fluid pro-
duced from a single mouse using the anti-Dd-STAT monoclonal D4
(Araki et al., 1998). The monoclonal anti-pTyr antibody PY72
(Glenney et al., 1988) and the anti-Dd-STAT polyclonal SC7 (Araki
et al., 1998) were used for subsequent Western blotting. Cells to be
analysed by immunoprecipitation were developed in shaking cul-
ture in KK2 phosphate buffer and pulsed with 30 nM cAMP every
6 min for 5 h, before the addition of 5 mM cAMP. For each time
point, 2 3 107 cells were lysed on ice in 1 ml of NP-40 buffer [1 3
PBS (pH 7.4), 1% Nonidet P-40, 10 mM NaF, 2 mM EDTA (pH 7.2),
1 mM sodium PPi, 0.8 mg leupeptin/ml, and 4 mg aprotinin/ml] for
10 min. After a 10-min centrifugation, the supernatant was incu-
bated with 2.5 ml D4 ascites fluid for 1 h at 4°C with gentle rocking.
A total of 40 ml of 50% protein A-Sepharose (Sigma) was added, and
he incubation was continued at 4°C with gentle rocking. After
eing washed three times in 500 ml of NP-40 buffer, the immuno-
recipitates were eluted from the beads by boiling in SDS sample
uffer. The samples were subjected to Western blot analysis after
ize separation on a 10% polyacrylamide gel, as described previ-

usly (Gamper et al., 1996). t
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RESULTS

Patterns of STATa Nuclear Enrichment in Mutant
PTP1 Strains

To test the possible role of Dictyostelium PTP1 in the
egulation of STATa, the pattern of STATa nuclear enrich-
ent was examined in a mutant strain in which ptp1 had

een disrupted by homologous recombination (Howard et
l., 1992). The strain was developed to the slug stage and
tained using either the anti-STATa monoclonal antibody
4 (Araki et al., 1998) or the pTyr-specific anti-STATa
olyclonal antibody, SC9P, prior to examination by confo-
al microscopy (Fig. 1A). These two antibodies give essen-
ially identical results, since any cytoplasmic STATa de-
ected with D4 does not obscure the much more
oncentrated nuclear staining. The extent of nuclear en-
ichment can be correlated with the degree of STATa
ctivation, since only STATa phosphorylated on tyrosine
nters the nucleus.
In these experiments, we also used the wild-type axenic

train KAx-3 (Fig. 1A), the parent of the PTP1 overexpress-
ng strains (see below), and JH10, a KAx-3 derivative that is
he parent of the ptp1 null strains (data not shown). No
etectable differences were observed between KAx-3 and
H10, and the pattern of STATa nuclear enrichment in
hese strains closely resembled that previously described
or another wild-type strain, Ax2 (Araki et al., 1998). As

shown in Fig. 1A, nuclear enrichment of STATa is only
detected in a subset of pstA cells in the tip of the slug. When
the staining pattern of ptp1 null cells is compared to the
wild-type strain, we see a clear increase in the number of
cells in which STATa shows a strong nuclear enrichment,
with staining cells extending into the pstO domain and in
some scattered cells in the anterior of the prespore region
(Fig. 1A). A striking feature of the ptp1 null cell staining
pattern is that STATa nuclear enrichment is no longer
confined to the cortical cell layers, as seen for wild-type
slugs posterior to the extreme tip of the slug (Araki et al.,
1998) (Fig. 1B). To further examine the role of PTP1 in the
regulation of STATa, we expressed a mutant PTP1,
PTP1C310S, in which the essential, conserved cysteine resi-
due in the active site was changed to a serine residue, in
wild-type (KAx-3) cells. This mutation is known to abolish
catalytic activity (Guan and Dixon, 1991) but still allows
binding to substrates (Sun et al., 1993; Milarski and Saltiel,
1994; Noguchi et al., 1994) and can often sequester and
protect a substrate from dephosphorylation by the endoge-
nous PTP, as was demonstrated for Dictyostelium PTP3
(Gamper et al., 1996, 1999). The nuclear STATa staining
seen in the PTP1C310S strain was stronger than that observed
n wild-type slugs (Fig. 1A), suggesting that STATa activa-
ion and hence its nuclear translocation have been potenti-
ted. However, these experiments cannot distinguish be-
ween a direct effect on STATa or on an upstream kinase
hat regulates STATa tyrosine phosphorylation. Attempts

o detect an interaction of the PTP1C310S protein and STATa

s of reproduction in any form reserved.



236 Early et al.
FIG. 1. Patterns of STATa nuclear enrichment in whole mounts of wild-type and PTP1 mutant slugs detected with anti-STATa
antibodies. At least five slugs were examined for each strain, because in general STATa staining is dynamic and patterns observed can vary
from slug to slug. This variation can depend on whether or not the slug tip is in contact with the substratum (T. Abe, personal
communication). All examined slugs showed a similar pattern and a representative slug is shown. Newly formed slugs from water agar
plates were fixed, stained, and mounted before viewing by confocal microscopy. (A) All slugs shown are projected images derived from Z
series. (a) and (b), stained with the monoclonal D4, which was raised against a STATa C-terminal peptide and recognises total STATa (Araki
et al., 1998). (c) and (d), stained with the affinity purified polyclonal SC9P, which recognises tyrosine phosphorylated STATa. Both
antibodies detect nuclear STATa, since it is known to be in the p-Tyr form. (a) KAx-3, a parental axenic strain, showing STATa nuclear
enrichment in the tip only. (b) PTP1 null, showing much more widespread STATa nuclear enrichment. (c) PTP1 null, and (d) PTP1C310S,
showing a similar increase in nuclear STATa staining. The scale bar in (b) represents 50 mM. (B) Pattern of nuclear enrichment of STATa
staining in cross sections of the prestalk region in a typical PTP1 null slug. Staining was detected using SC9P. Transverse sections (1–8)
were scanned by the confocal microscope at 20-mm intervals from the tip of the slug to the rear of the pstO region, and in contrast to the
lack of staining in the slug interior the extreme tip seen in wild-type slugs (Araki et al., 1998), there is staining in the centre of the PTP1

null slugs in all sections.

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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237PTP1 and Dictyostelium STATa Regulation
in vitro were unsuccessful (data not shown), which could be
due to STATa not being a direct substrate of PTP1 or the
possible inaccessibility of this phosphorylated tyrosine un-
der the conditions used.

The effect of overexpressing PTP1 was examined in
strains (PTP1OE) in which PTP1 was expressed from the
cloned ptp1 promoter on a high-copy vector containing an
actin 6-neomycin resistance cassette (Howard et al., 1992).

ells were selected at two different levels of G418 (20 and
0 mg/ml) to obtain strains with low and moderate levels of

overexpression, respectively (Fig. 2). It was previously
shown that by increasing the G418 concentration, the copy
number of the PTP1OE construct and the severity of the
henotype were also increased (Howard et al., 1992). There-
ore, the level of PTP1 activity is assumed to correlate with
he G418 level used. No change in STATa nuclear staining
as seen in slugs derived from cells selected with 20 mg/ml
418. However, in the cells selected with 80 mg/ml G418,

there was a significant reduction in the intensity of STATa
staining throughout the anterior region of the slug. Thus,
abolishing or increasing the level of PTP1 has a reciprocal
effect on STATa nuclear enrichment, with an inverse
correlation between PTP1 activity and the degree of nuclear
enrichment.

The Phosphorylation of STATa on Tyrosine Is
Altered in the PTP1 Mutant Strains

STATa tyrosine phosphorylation is activated in
aggregation-competent cells in response to high, continu-
ous cAMP (Araki et al., 1998). To examine if the kinetics
and level of STATa tyrosine phosphorylation are altered in
response to cAMP in PTP1 mutant strains, cells were first
pulsed with 30 nM cAMP for 5 h to maximize the levels of
AMP receptor cAR1 and other components of the signaling
athways (Insall et al., 1994: Schnitzler et al., 1995) and

then stimulated with 100 mM cAMP. Samples were taken at
imes varying from 30 s to 20 min after cAMP stimulation.
ach sample was divided in two, and both halves were
ubjected to an immunoprecipitation reaction using ascites
uid derived from the anti-STATa monoclonal antibody,
4 (Araki et al., 1998). The products were processed for
estern blotting using either the anti-STATa polyclonal

ntibody SC7 (Araki et al., 1998) or the anti-pTyr antibody
Y72 (Glenney et al., 1988) as a probe (Fig. 3). The anti-
TATa polyclonal probe indicated that equal levels of
TATa protein were loaded in all lanes. Using PY72 as a
robe, only (p-Tyr)-STATa is detected. In wild-type cells, no
yrosine phosphorylated (p-Tyr)-STATa is visible at the zero
ime point. A faint p-Tyr-STATa band is detected after 30 s,
hich increases to a maximum level by 10 min. A second,
ore slowly migrating species is first clearly visible 10 min

fter the addition of cAMP in the control cells. It has been
hown that this lower mobility form is the result of
dditional phosphorylation on serine by GSK-3 (Ginger et
l., 2000). The rapid nuclear translocation of STATa upon

AMP stimulation is coincident with the appearance of

Copyright © 2001 by Academic Press. All right
yrosine phosphorylation rather than of this later modifica-
ion (Araki et al., 1998). The results obtained for the ptp1
ull cells and the cells overexpressing PTP1C310S were very

FIG. 2. STATa nuclear enrichment in strains overexpressing
PTP1, detected using SC9P. All images shown are projected Z
series, recorded using identical confocal settings. The laser power
was increased relative to that used for the images in Fig. 1 to enable
signal detection in C. (A) KAx-3 slug. (B) PTP1OE slug, selected at 20
mg/ml G418, showing a wild-type level and pattern of staining. (C)
PTP1OE slug, selected at 80 mg/ml G418, showing significantly
reduced but not absent staining. The staining cells attached to the
slugs in B and C are not part of the slugs but are among those cells
that have failed to aggregate and have been left on the substratum.
PTP1 expression was driven by its own promoter in conjunction
with an actin 6 promoter-driven, neomycin-selectable marker
(Howard et al., 1992). The scale bar in (C) represents 50 mM.
similar to each other. The lower band was visible in

s of reproduction in any form reserved.
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238 Early et al.
unstimulated cells; after 30 s, the intensity of this band was
greater than seen at any stage in wild-type cells, and the
levels increased to a maximum level 5 min after cAMP
addition. The upper band was also detected earlier and was

FIG. 3. Comparison of tyrosine phosphorylation of STATa in
esponse to added cAMP in PTP1 mutant and wild-type cells. Cells
f the various strains shown were developed in shaking suspension
or 5 h, after which the zero time point was harvested and 100 mM
AMP added to the remainder of the cells. Further time points were
emoved 30 s, 1 min, 5 min, 10 min, 15 min, and 20 min after the
ddition of 100 mM cAMP. The time points were subjected to

immunoprecitation using ascites fluid derived from the anti-
STATa monoclonal antibody D4 (Araki et al., 1998), and the
products were analysed by Western blotting using the anti p-Tyr
monoclonal PY72 (Glenney et al., 1988) (A and B) or the anti-
TATa polyclonal SC7 (Araki et al., 1998) as a probe (C). The longer
xposure of the blot of samples obtained from the PTP1OE cells, WT

cells, and ptp1 null cells shown in B demonstrates the extent of
signal reduction for the PTP1OE strain. C illustrates that equal
levels of STATa protein were loaded in all lanes. The two arrows
indicate the two STATa bands that are detected on Western blots.
Both are tyrosine phosphorylated and the additional modification
that gives rise to the upper band has been shown to be serine
phosphorylation mediated by GSK-3 (Ginger et al., 2000).
of greater intensity than in wild-type cells, so that the ratio

Copyright © 2001 by Academic Press. All right
f the upper to lower band was similar to that in the control
ells. Overall, there was an eightfold increase in the level of
-Tyr-STATa. The opposite result was obtained for the
TP1OE cells: no p-Tyr-STATa could be detected at any time
oint. Taken together, these data clearly demonstrate a
orrelation between the activity of PTP1 and the rate and
verall extent of STATa tyrosine phosphorylation.

Moderate Overexpression of PTP1 Partially
Phenocopies the STATa Null Mutant

The developmental phenotype of PTP1OE strains depends
on the degree of overexpression (Howard et al., 1992). When
PTP1 is very highly overexpressed, aggregation is blocked.
This phenotype is more severe than that of the STATa null,
suggesting that PTP1 has additional functions beyond that
of regulating STATa and/or that at very high levels of
protein, PTP1 may affect pathways that it normally does
not regulate in wild-type cells. When PTP1 is moderately
overexpressed (cells selected at 80 mg/ml G418), slugs are
formed, enabling the consequences of the misregulation of
STATa by PTP1 at the multicellular stage to be studied. As
the tyrosine phosphorylation and nuclear enrichment of
STATa is reduced in this strain, an obvious prediction was
that aspects of the STATa null phenotype would be seen. A
key feature of the STATa null phenotype is premature
expression of the ecmB gene in the anterior prestalk region
of slugs as detected using the reporter ecmB/lacZ (Jermyn
and Williams, 1991; Mohanty et al., 1999) To examine the
effect of PTP1 overexpression on ecmB expression, an Ax-2
background was used, as it is the strain in which ecmB
repression by STATa was previously demonstrated. How-
ever, there was no ectopic expression of ecmB/lacZ in the

TP1OE slugs (Fig. 4), suggesting that the reduced, but
etectable, level of nuclear STATa present is sufficient to
ediate ecmB repression.
In contrast, abnormal patterning was seen in the PTP1OE

strain using ecmAO/lacZ, which is expressed in all prestalk
ells (Jermyn and Williams, 1991), and the two prespore
eporters, pspA/lacZ and SP60/lacZ (Early et al., 1988;
ingermann et al., 1989; Haberstroh and Firtel, 1990). A

arge domain that does not stain with prespore markers but
oes stain with ecmAO/lacZ was observed at the rear of a
ubset of the slugs, in contrast to the KAx-3 control (Fig. 4).

similar staining pattern is observed in STATa null slugs
hat have migrated for a period of time (Fig. 4; Mohanty et
l., 1999). It is thus likely that the change in spatial
atterning of prestalk and prespore cells when PTP1 is
verexpressed is a consequence of a reduction in nuclear
TATa.

The Prestalk to Prespore Cell Ratio Is Altered in
the ptp1 Null Strain

Cell-type-specific markers were similarly used in the
ptp1 null strain to examine cellular differentiation and

patterning. Somewhat unexpectedly, in view of the absence

s of reproduction in any form reserved.
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239PTP1 and Dictyostelium STATa Regulation
of any morphological abnormality in ptp1 null slugs, a clear
lteration in cellular differentiation was observed. There

FIG. 4. Expression of cell-type-specific markers in PTP1OE slugs and
the rear of slugs. (A) and (B) Ax-2 slugs or (C–F) KAx-3 slugs, either over
plated on water agar plates exposed to unidirectional light, i.e., after
constructs: (A) ecmB/lacZ (wild-type control, no PTP1OE); (B) PTP1OE a
Fig. 5C); (D) PTP1OE and pspA/lacZ (for control without PTP1OE see F
no PTP1OE). (G) and (H), STATa null cells transformed with ecmAO/la
egion is oriented towards the left of the picture and indicated with an a
spA-lacZ marker due to the stability of the marker, combined with t
ccompanying transdifferentiation that occurs during slug migration
as a significant expansion in the size of the pstO domain (

Copyright © 2001 by Academic Press. All right
nd a corresponding large decrease in the size of the
respore zone using pspA/lacZ or SP60/lacZ as reporters

TATa null slugs, showing a similar expansion of prestalk staining at
ssing PTP1 or lacking PTP1OE, were analysed 24 h after the cells were
h of slug migration. The cells were transformed with the following

cmB/lacZ; (C) PTP1OE and SP60/lacZ (for control without PTP1OE see
E); (E) PTP1OE and ecmAO/lacZ; (F) ecmAO/lacZ (wild-type control,
F), 24 h, (G), 40 h after onset of development. In all cases, the prestalk
. [N.B. In the case of C, the prestalk region is stained with the prespore
rward movement of cells from the prespore to the prestalk region and
erbeck et al., 1994).]
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Fig. 5). Quantitation of the number of prespore cells in the
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ptp1 null strain and the wild-type control strain was carried
ut by staining disaggregated slug cells with MUD-1, the
onoclonal antibody that recognises the product of the

respore-specific gene pspA (Krefft et al., 1983). The num-
ber of pstO cells was also quantitated by counting stained
cells after disaggregation of slugs expressing pstO/lacZ. The
number of prespore cells decreased from ;70% in wild-type
slugs to ;55% in the ptp1 null slugs (Table 1), in good
agreement with the observed patterns of lacZ staining.
Conversely, the pstO population increased almost twofold
from 19.9 to 38.3%. The size of the pstA region was
apparently unaltered compared to wild-type slugs, and
ecmB/lacZ staining continued to be restricted to the core of
the pstA domain of the slug (data not shown). The latter
result was as expected for slugs with increased levels of
nuclear STATa, in view of the role of STATa as a negative

FIG. 5. Comparison of the expression of cell-type-specific marker
O to prespore ratio in ptp1 null slugs. (A), (C), and (E), newly for
ollowing cell-type specific markers were used: (A) and (B), ecmO

pspA/lacZ are both prespore markers. For each marker, the staining
wild-type slugs.
s in wild-type and ptp1 null slugs demonstrates an altered prestalk (pst)
med KAx-3 slugs; (B), (D), and (F), newly formed ptp1 null slugs. The
/lacZ; (C) and (D), SP60/lacZ; (E) and (F), pspA/lacZ. SP60/lacZ and
reaction was continued for the same length of time for the mutant and
regulator of ecmB (Mohanty et al., 1999). p

Copyright © 2001 by Academic Press. All right
TABLE 1
Quantitation of the Prespore–Prestalk Ratio in Wild-Type and
PTP1 Null Slugs, Either by Using the Mouse Monoclonal
Antibody MUD-1, which Recognises the Product of the Prespore-
Specific Gene pspA (Krefft et al., 1983) to Stain Disaggregated
Cells from Newly Formed Slugs, or by Counting Positive Cells
after Disaggregating Fixed and Stained Newly
Formed Slugs Marked with ecmO/lacz

Strain KAx-3 PTP1 null

MUD1 69.5% 55.3%
1ve (1869) (1331)
ecmO-lacZ 19.9% 38.3%
1ve (1203) (1255)

The total number of cells counted for each strain is shown in

arentheses.
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241PTP1 and Dictyostelium STATa Regulation
To investigate the mechanism underlying this altered
prespore-pstO ratio, we performed cell mixing experiments
in which the ptp1 null cells expressing either the pstO or a
prespore-driven lacZ marker were mixed with an excess of
the nontagged parental strain (JH10) and allowed to coag-
gregate and form chimeric slugs (Fig. 6). ptp1 null cells
marked with a reporter expressed in all cells, Act15/lacZ,
were mixed with wild-type cells to demonstrate that the
mutant cells were capable of contributing to all parts of the
slug. With a mixture of 25% pstO-marked ptp1 null cells
and 75% JH10 cells, the pattern of pstO staining in the
chimeric slugs is indistinguishable from that seen in wild-
type slugs. We cannot rule out the possibility that the ptp1
null cells continue to overproduce pstO cells, however,
since the ptp1 null cells now make up only a minority of
the total cells. Consequently, any increase in the pstO

FIG. 6. Patterns of marker gene expression in newly formed slugs
composed of a mixture of JH10 wild-type cells and ptp1 null cells.
(A) 75% unmarked JH10 cells mixed with 25% ptp1 null cells
expressing the ubiquitous marker Act15/lacZ, showing that com-
plete mixing has occurred. (B) 75% unmarked JH10 wild-type cells,
25% PTP1 null cells expressing ecmO/lacZ. It was necessary to use
25% ecmO/lacZ marked cells to obtain detectable levels of stain-
ing in the chimera. (C) 90% JH10 cells, 10% PTP1 null cells
expressing SP60/lacZ.
region would be more difficult to detect than in pure S

Copyright © 2001 by Academic Press. All right
stO-marked ptp1 null slugs. In contrast, the prespore-
arked ptp1 null cells clearly still exhibit aberrant spatial

atterning. When mixed with an excess of parental cells (in
he ratio 25:75 or 10:90), ptp1 null SP60/lacZ cells are
onfined to the rear 50% of the slug, as opposed to occupy-
ng the rear ;75% of wild-type slugs. Thus, the ptp1 null
ells seem to have a cell-autonomous defect in forming the
respore cells that occupy the anterior prespore region.

DISCUSSION

We have investigated the role of Dictyostelium PTP1 in
the regulation of STATa. Our results provide clear evidence
that PTP1 is a negative regulator of STATa function. First,
there is an inverse correlation between the levels of PTP1
protein and the extent of tyrosine phosphorylation of
STATa in response to cAMP stimulation of aggregation-
competent cells. In strains overexpressing PTP1, STATa
tyrosine phosphorylation is, within the limits of detection
of the assay, noninducible by cAMP. In ptp1 null cells, peak
levels of STATa tyrosine phosphorylation are significantly
increased (eightfold) compared to the peak levels in wild-
type cells. Moreover, overexpressing a catalytically inactive
version of PTP1, PTP1310S, in a wild-type background had a
resumed dominant negative effect and increased the ty-
osine phosphorylation of STATa, similar to that observed
n ptp1 null cells. From these results, we conclude that
TP1 is required to attenuate the tyrosine phosphorylation
f STATa induced by extracellular cAMP.
In addition, we found that there is a low, basal level of

TATa tyrosine phosphorylation in unstimulated ptp1 null
ells. A similar effect has been observed with STATs in
ther species, for example, with Stat6 in mammalian cells
riefly treated with the PTP inhibitor pervanadate. In these
ells, this treatment inhibits a receptor-associated PTP
ctivity, which leads to an increase in the tyrosine phos-
horylation and activation of JAK1 (Haque et al., 1997). In
he case of ptp1 null cells, the absence of PTP1 activity
ould lead to increased basal activity of the as yet unknown
TATa kinase and hence a basal level of (p-Tyr)-STATa
ctivation in the absence of ligand stimulation. We believe
t likely that PTP1 inhibits STATa function by acting on an
pstream component such as a tyrosine kinase, possibly by
emoving an activating tyrosine phosphate, rather than by
ephosphorylating STATa directly. This is for three rea-
ons: first, PTP1 has a putative N-terminal myristoylation
ignal and the protein is preferentially associated with the
lasma membrane (M. Gamper and R. A. Firtel, unpub-
ished observations), although we cannot exclude the pres-
nce of PTP1 in other cellular compartments; second, in
itro experiments using the “substrate-trapping” mutant
TP1C310S have not provided any evidence for direct inter-
ction of PTP1 with STATa; third, PTP1 does not dephos-
horylate p-Tyr-STATa in vitro under the conditions tested
data not shown). The absence of any detectable p-Tyr-

TATa in PTP1OE cells even at early times after stimulation
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is consistent with inhibition of the initial phosphorylation
of STATa by PTP1, rather than direct dephosphorylation.
We cannot, however, rule out the possibility that the
STATa p-Tyr residue is inaccessible to PTP1 in vitro and/or
hat STATa is so rapidly dephosphorylated by PTP1 in the
TPOE cells that no pTyr-STATa is observed. Thus, al-

though these data are consistent with the model that
STATa is not a PTP1 substrate, the evidence is not defini-
tive. Also, since there is no evidence that any of the eight
known Dictyostelium tyrosine kinases is a STATa kinase
(Tan and Spudich, 1990; Adler et al., 1996; Nuckolls et al.,
1996; Kim et al., 1999; R. Firtel and J. G. Williams,
unpublished data), the model that PTP1 dephosphorylates
such a component cannot be tested at present.

When STATa is activated by tyrosine phosphorylation in
response to cAMP signaling, it very rapidly translocates
into the nucleus (Araki et al., 1998). Therefore, if PTP1 is
involved in attenuating levels of STATa tyrosine phosphor-
ylation in vivo, it should regulate the level of nuclear
STATa. Analysis of slugs of PTP1 mutant and wild-type
strains using immunohistochemical methods revealed an
inverse correlation between predicted PTP1 activity and
levels of STATa in the nucleus. In contrast, changes in the
pattern of STATa nuclear accumulation are not seen in
mutants that lack or overexpress the two other known PTP
genes, ptp2 and ptp3 (A. Early and R. A. Firtel, unpublished
data). The changes in the pattern of STATa nuclear enrich-
ment in the PTP1 mutant strains suggest that the anterior
half of the slug is where PTP1 acts to attenuate STATa
activation in response to cAMP. This is consistent with the
observation that a ptp1/lacZ reporter is preferentially ex-
pressed in prestalk cells in the multicellular stages (Howard
et al., 1992). In contrast to the phosphorylation of STATa
on tyrosine, the phosphorylation of STATa on serine by
GSK3 promotes its export from the nucleus (Ginger et al.,
2000). In ptp1 null cells in shaking culture treated with
cAMP, the apparent level of GSK-3-mediated serine phos-
phorylation of STATa increases in line with tyrosine phos-
phorylation. However, this observation can be reconciled
with the increased nuclear staining seen in the prestalk
region of ptp1 null slugs, since STATa regulation by GSK-3
seems to operate prior to tip formation only (Ginger et al.,
2000).

Overexpression of PTP1 phenocopies some of the aspects
of the STATa null mutant. The residual functions could be
due to the reduced, but finite, levels of p-Tyr-STATa
present in PTP1OE cells during the multicellular stages or
ossible as yet uncharacterised roles for nontyrosine-
hosphorylated STATa. STATa is believed to function, in
art, as a transcriptional repressor that prevents premature
ntry of prestalk cells into the stalk cell pathway of differ-
ntiation. This has been inferred from the fact that in the
TATa null mutant the ecmB gene is ectopically expressed
n prestalk cells, prior to their entry into the stalk tube
Mohanty et al., 1999). When PTP1 is overexpressed, the
evel of nuclear STATa in tip cells, although reduced, seems

o be sufficient for correctly regulated ecmB expression.

Copyright © 2001 by Academic Press. All right
owever, there is another aspect of the PTP1OE phenotype
hat may be the consequence of a reduction in nuclear
TATa levels. In both STATa null and PTP1OE slugs, a zone

of ecmAO-positive, non-prespore cells accumulates at the
rear. One possibility is that prestalk cells with either absent
or reduced nuclear STATa drop back to the rear of the slug
during migration. This is an attractive explanation because
several lines of evidence have shown that the prestalk
STATa null cells are impaired in cell movement (Mohanty
et al., 1999). An alternative explanation is that STATa
activity is required at the rear of slugs to prevent prestalk
cell differentiation and/or promote prespore cell differentia-
tion. Although nuclear enrichment of STATa is not ob-
served in the rear of slugs (Araki et al., 1998), it is known to
be present at some level in all slug nuclei and so its function
here is not precluded.

The most striking characteristic of the ptp1 null slugs is
an alteration in the prespore/pstO ratio, with an expansion
of the pstO cell population at the expense of the prespore
population. There is no decrease in the prestalk region
when PTP1 is overexpressed, but the absence of PTP1
compared with an increase in its activity is not necessarily
expected to have directly opposing effects. A reciprocal
expansion of the pstO cell population and decrease in the
prespore cell population has been previously described for
the Wariai (Wri) null mutant (Han and Firtel, 1998). Wri
encodes a homeobox-containing gene and seems to function
cell-nonautonomously to regulate the size of the pstO
compartment. Cell mixing experiments suggest that in this
case, a cell-autonomous process is responsible for the re-
duction in prespore cells in the ptp1 null slug. When ptp1
null cells were mixed with an excess of unmarked cells of
the parental strain, a prespore marker was expressed only
within the posterior prespore zone, despite the ability of the
ptp1 null cells to contribute to all cell types and the
apparent absence of an expanded pstO region. Therefore, we
suggest that PTP1 activity is required for the differentiation
of the subset of prespore cells that reside in the anterior
prespore zone. Previous evidence indicating differences in
the pathways activating prespore gene expression in the
anterior and posterior of the prespore zone has been ob-
tained by analysing deleted versions of the SP60 promoter
(Haberstroh and Firtel, 1990). More recently, this has been
shown, in part, to be due to a transcriptional activation
gradient mediated by the interaction of the RING domain/
leucine zipper protein rZIP and cAMP-dependent protein
kinase (Balint-Kurti et al., 1998). Therefore, it is possible
that PTP1 has a role in regulating this process.

There is evidence for involvement of PTPs in develop-
mental processes in other systems. For instance, study of
null mutants in mice has indicated that the receptor PTP
LAR subfamily is likely to be involved in neuronal and
epithelial development (Yeo et al., 1997; Elcheby et al.,
1999; Wallace et al., 1999). In Drosophila, receptor PTPs,
including Dlar, have been shown to be involved in the
control of axon guidance (Desai et al., 1996, 1997; Kreuger

et al., 1996). LAR in mice also has a role in mammary
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243PTP1 and Dictyostelium STATa Regulation
development (Schaapveld et al., 1997). However, the ligands
and downstream signalling components are little known in
these processes. Homologs of the mammalian nonreceptor
PTP SHP2 are present in Caenorhabditis elegans (Gutch et
l., 1998) and Drosophila (Perkins et al., 1996). The C.

elegans SHP2 homolog is involved in oogenesis and vulval
development via EFGR signal modulation. Work from Xe-
nopus using dominant-negative SHP2 has indicated a role
in gastrulation and mesoderm induction through FGFR
signalling (Tang et al., 1995; O’Reilly et al., 2000). This

odel is supported by studies of chimaeric SHP2 null mice,
reated to overcome the embryonic lethal effect of the null
utation (Saxton and Pawson 1999; Saxton et al., 2000).
hese authors have found that SHP2 is required for gastru-

ation and limb development. The defect in cell movement
n gastrulation may be due to the inability of cells to
hemotax to FGF, shown in vitro. In limb development, it
as been concluded that SHP2 is involved in signalling
uring ectodermal–mesenchymal interactions. The pheno-
ype of mutants expressing truncated SHP2 is similar to
hat of the FGFR null mutant chimaera, again suggesting a
echanistic link (Saxton et al., 1997). However, specific

HP2 interactions have not been characterised. A target has
een defined for the SHP2 homolog Csw in Drosophila
sing substrate trapping, namely the scaffolding/adaptor
rotein Dos (Herbst et al., 1996). Acting through Dos, Csw
as a positive effect on Sevenless RTK signalling but the
recise mechanism is not known. The role of SHP2 in
evelopmental processes has not been linked to its regula-
ion of STAT molecules to date.

In our studies, we have shown that similar to SHP2, PTP1
as a role in regulating both STAT activation and signalling
athways controlling developmental processes. Unlike
HP2, however, PTP1 does not contain SH2 domains, and
herefore the details of the mechanisms will differ. As PTP1
ontains an N-terminal myristoylation site and associates
ith the plasma membrane (M. Gamper, S. Mohanty, and
. A. Firtel, unpublished observations), it is possible that
TP1 is constitutively associated with the subcellular do-
ain that would contain the activated STATa kinase. As
e propose that with respect to STATa, PTP1 acts on an
pstream component such as the STATa kinase rather than
n STATa directly, identification of the Dictyostelium
TATa kinase is of crucial importance in helping to resolve
ow PTP1 mediates STATa function.
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