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Regulation of Cell-Fate Determination
in Dictyostelium

Jason M. Brown and Richard A. Firtel1

Center for Molecular Genetics, Department of Biology, University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093-0634

A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic
microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and
spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing
many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the
aggregation of ;105 cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morpho-
enesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the
nterior–posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative
implicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly,

analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA,
STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and
other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is
iscussed. © 1999 Academic Press
Key Words: Dictyostelium; signaling pathways; cAMP; receptors; cell fate.
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INTRODUCTION

The basic element of all multicellular development is the
initial divergence of specialized cell types to generate func-
tional tissues. In metazoans, which become multicellular
by division of a zygote, both asymmetric cell division and
intercellular communication provide information that di-
rects specialization of cell types (Bowerman, 1998; David-
son et al., 1998; Dierick and Bejsovec, 1999; Sundaram and

an, 1996). Dictyostelium is unicellular under optimal
rowth conditions. Nutrient depletion triggers multicellu-
ar development, which culminates in the production of a
ruiting body consisting of a mass of dormant spores held
loft by a rigid stalk constructed of vacuolated cells (Aubry
nd Firtel, 1999; Firtel, 1995, 1996; Ginsburg et al., 1995;
oomis and Cann, 1982; Parent and Devreotes, 1996; Wil-
iams, 1995). This developmental program is notable for its

1 To whom correspondence should be addressed at the Center for

Molecular Genetics, Room 220, University of California at San
Diego, La Jolla, CA 92093-0634. Fax: (858) 534-7073.
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elative simplicity. The entire process takes ;24 h and
nvolves the generation of only a few distinct cell types.
owever, the pathways required for the specification of
ivergent cell types depend on factors similar to those in
etazoans: preexisting information contained within each

ell and intercellular communication. Dictyostelium devel-
pment requires highly conserved molecules, such as
TATs, PKA, and GSK-3, which are also important for
etazoan development (Harwood et al., 1995; Kawata et

l., 1997; Kay, 1997; Mann and Firtel, 1991; Mohanty et al.,
1999; Simon et al., 1992). Mutational analysis, facilitated
greatly in recent years by the use of gene knockouts,
insertional mutagenesis, and shotgun antisense technology
has allowed an in-depth study of cell-type induction and
patterning in Dictyostelium (Kuspa and Loomis, 1992;

ann et al., 1994a; Gomer, 1998, 1999). In addition, exami-
ation of intercellular signaling by mosaic analysis is easily
erformed by mixing strains together and allowing them to
odevelop as a chimera (Dynes et al., 1994). Available EST
databases and the ongoing sequencing of the Dictyostelium
genome have revealed further similarities between the
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427Cell-Fate Determination in Dictyostelium
genetic control of Dictyostelium multicellular develop-
ment and that of higher eukaryotes (http://dicty.cmb.
nwu.edu/dicty/dictyostelium_genomics.htm) (Kay and Wil-
liams, 1999; Morio et al., 1998).

The formation of a multicellular organism in Dictyoste-
lium results from the chemotactic aggregation of up to 105

cells (Firtel, 1995; Loomis, 1996; Loomis et al., 1998;
illiams, 1995). Accumulation of secreted density-sensing

actors regulates the initial expression of gene products
equired for aggregation (Clarke et al., 1987; Gomer et al.,

1991; Jain et al., 1992, 1997; Klein and Darmon, 1976;
Mehdy and Firtel, 1985; Rathi et al., 1991; Brock and
Gomer, 1999). Initial production of cAMP by any given cell
causes neighboring cells to rapidly induce the activation of
adenylyl cyclase and release cAMP into the extracellular
medium. Chemoattractant stimulation simultaneously
causes a temporary decrease in cAMP-receptor affinity and
adaptation of the signaling pathways, leading to the unidi-
rectional outward relay of the cAMP signal and an auto-
regulatory loop that is required for the high-level expression
of many of the genes involved in these signaling pathways
(Devreotes, 1994; Dinauer et al., 1980; Kesbeke et al., 1985).
Degradation of cAMP by both intracellular and extracellu-
lar phosphodiesterases leads to resensitization of cAMP-
stimulated pathways (Franke and Kessin, 1992; Shaulsky et
al., 1998; Thomason et al, 1998), thereby permitting the
relay of another wave of chemoattractant. Dictyostelium
cells are exquisitely sensitive to cAMP gradients and un-
dergo chemotaxis toward the source of the signal (Aubry
and Firtel, 1999; Parent et al., 1998). Many of the compo-
nents of cAMP relay and chemotaxis have been identified
and studied, including classical signal transduction mol-
ecules and novel proteins; however, space does not permit a
thorough discussion of these processes.

Directed chemotaxis toward cAMP results in the produc-
tion of a hemispherical mound. Subsequently, an apical tip
is formed that begins to extend upward. This tip elongates
into a finger-shaped structure that falls onto the substratum
to yield a “slug” that can migrate toward light, heat, or
various chemicals, a behavior that, in the natural habitat,
leads to deposition of the fruiting body in an more advan-
tageous environment for spore dispersal (reviewed in Fisher
et al., 1984).

Spatial organization of specialized cells is most apparent
at the slug stage when distinct cell types are arranged along
the anterior–posterior axis (Fig. 1). Cells that will ulti-
mately differentiate into spores (prespore cells) are found in
the posterior 80% of the slug. Cells that will eventually
make up the stalk (prestalk cells) are localized to the
anterior tip and constitute about 20% of the slug. Fusion of
lacZ to the promoter region of ecmA, which encodes an
extracellular matrix protein, has been used to subdivide the
prestalk population into several classes: (i) prestalk A cells
(pstA), which are visualized using a distal ecmA promoter/
lacZ fusion (designated ecmA/lacZ), are found in the ante-

riormost 10% of the slug; (ii) prestalk O cells (pstO), which
stain with a proximal ecmA promoter region/lacZ fusion

Copyright © 1999 by Academic Press. All right
(designated ecmO/lacZ), form a domain between the pstA
cells and the prespore zone; and (iii) prestalk B cells (pstB),
which express another extracellular matrix protein, ecmB,
are found as a small population at the extreme posterior
designated the “rearguard” and as a band of cells at the base
of the slug near the prestalk–prespore boundary (Dormann
et al., 1996; Jermyn et al., 1996). A cone of cells at the
extreme anterior expresses both ecmA and ecmB and these
cells are referred to as pstAB cells (Ceccarelli et al., 1991;
Dingermann et al., 1989; Early et al., 1993; Fosnaugh and
Loomis, 1993; Gomer et al., 1986; Haberstroh and Firtel,
1990; Jermyn et al., 1989; Jermyn and Williams, 1991;
Sternfeld, 1992). A fourth class of cells, anterior-like cells
(ALCs), is found dispersed throughout the slug and displays
many of the same characteristics as prestalk cells (Devine
and Loomis, 1985; Firtel, 1995; Gaskell et al., 1992; Loomis,
1982; Sternfeld and David, 1982). The ALC population
constitutes ;10% of the prespore compartment and con-
tains overlapping subsets of cells expressing ecmA and
ecmB, as well as other markers not highly expressed in the
anterior prestalk population. ALCs play an important role
in the regulation and maintenance of cell-type proportions
(Abe et al., 1994; Mann and Firtel, 1993; Mann et al., 1994b;
Sternfeld and David, 1981). Accordingly, the expression of
some genes encoding regulatory proteins are either highly
enriched or specific for ALCs (Esch and Firtel, 1991;
Gaskins et al., 1994; Hadwiger and Firtel, 1992; Hadwiger et
al., 1996; Howard et al., 1992). ALCs ultimately form the
upper and lower cups that surround the spore mass. The
pstAB and pstB cells and ALCs combine to form the basal
disc, the structure that attaches the fruiting body to the
substratum (Jermyn et al., 1996; Sternfeld, 1992).

Prestalk and prespore cells are first visible as the mound
forms toward the end of aggregation. Careful examination

FIG. 1. Cell-type distribution in the Dictyostelium slug. Cell
types are identified by the expression of promoter/lacZ fusions.
The entire anterior prestalk domain, along with the ALCs, can be
visualized using a lacZ fusion to the whole ecmA promoter (termed
cmAO/lacZ). Deletion fragments of the ecmA promoter allow
dentification of prestalk subtypes. A distal promoter fusion
ecmA/lacZ) is expressed in pstA cells, whereas a proximal pro-

oter fusion (ecmO/lacZ) is expressed in pstO cells and ALCs.
stB cells are defined by their high-level expression of ecmB,
lthough some ecmA/lacZ and ecmO/lacZ staining is observed.
ee text for references.
shows that, although the pstO population initially displays
no defined pattern, the pstA cells are localized to the outer
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428 Brown and Firtel
edge of the aggregate (Early et al., 1995). The pstA cells
referentially sort to the apex of the mound and are flanked
y the pstO cells (Early et al., 1993). pstB cells first appear
hroughout the aggregate before sorting to the bottom of the
ound as it forms (Jermyn et al., 1996; Williams et al.,

1989). The mechanism utilized for sorting of the cell types
remains unclear, but it probably involves differential che-
motaxis toward cAMP and possibly selective cell adhesion
(Ginger et al., 1998; Levine et al., 1997; Siegert and Weijer,
992, 1995; Sternfeld, 1979) (A. Nicol, W.-J. Rappel, H.
evine, and W. F. Loomis, submitted for publication). pstA
ells chemotax more rapidly than other cell types toward
AMP and, along with the pstO cells, move from the apex
o the base if a mound is placed on agar containing cAMP
Early et al., 1995; Mee et al., 1986; Traynor et al., 1992).
The requirement for cAMP in cell-type sorting was called
into question by the demonstration that overexpression of
the protein kinase A catalytic subunit (PKA-C) in aca null
cells, which lack the major adenylyl cyclase expressed
during aggregation, can induce the individual cell types and
form properly proportioned fruiting bodies (Wang and
Kuspa, 1997). However, another adenylyl cyclase activity,
ACB, which is observed during multicellular development,
has recently been discovered (Kim et al., 1998; Meima and
Schaap, 1999). ACB is likely to be encoded by a newly
identified adenylyl cyclase gene, AcrA (Soderbom et al.,
1999). In acrA null cells, an adenylyl cyclase activity with a
developmental profile similar to that described for ACB is
absent. AcrA has some characteristics of a two-component
system response regulator, suggesting it may be regulated
by a two-component histidine kinase. It is possible that in
aca null/PKA-C overexpressing cells, extracellular cAMP is
supplied by ACB activity. If this is the case, it would
support earlier models of the essential role of cAMP
receptor-mediated signaling in cell sorting. Alternatively,
AcrA protein may have functions during development in
addition to being an adenylyl cyclase.

CELL-TYPE INDUCTION

One of the well-known hallmarks of Dictyostelium de-
elopment is the extreme plasticity of cell-type differentia-
ion. Early experiments by Raper demonstrated that, if
eparated from each other, the anterior prestalk and poste-
ior prespore portions of a slug can regenerate the missing
ell types to yield a normal fruiting body in the absence of
ell division (Raper, 1940; Sakai, 1973). This indicates the
resence of organism-wide homeostasis mechanisms that
aintain the correct ratio of cell types. However, such

tudies give no clues as to how cell-type proportions are
stablished or maintained. Raper’s slug-cutting experi-
ents demonstrate that each cell continues to retain the

otential to become either prestalk or prespore, suggesting
hat cell fate is regulated by position-dependent morphogen

ignals within a developing organism. Indeed, cell-type
hoice can be regulated in vitro through the combinatorial

u
f
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ontrol of exogenous cAMP and DIF-1, a membrane-
ermeable chlorinated hexanophenone secreted by develop-
ng cells (Berks and Kay, 1990; Berks et al., 1991; Kay, 1998;
own et al., 1976; Williams, 1991). In addition, a mutant
train (HM44) which makes little or no DIF-1 is unable to
nduce prestalk genes (Kopachik et al., 1983). Treatment of
M44 with exogenous DIF-1 rescues prestalk gene expres-

ion, supporting a role for DIF-1 in prestalk cell differentia-
ion. Extracellular cAMP is detected by a family of four
ell-surface serpentine cAMP receptors (cAR1-4) that are
ach expressed in a spatially and temporally specific man-
er and show different affinities to cAMP (Johnson et al.,
993; Louis et al., 1993, 1994; Rogers et al., 1997; Saxe et
l., 1991, 1993). Induction of all cell-type-specific genes
equires initial exposure to cAMP, which directs the expres-
ion of genes that regulate the early stages of multicellular
evelopment. Subsequent treatment with micromolar con-
entrations of cAMP alone leads to expression of the
respore genes pspA and SP60/cotC, whereas simultaneous
pplication of DIF-1 represses prespore gene expression and
nduces the prestalk-specific gene ecmA (Berks and Kay,
990; Fosnaugh and Loomis, 1991; Jermyn et al., 1987;
ears and Williams, 1988). ecmB is also induced by DIF-1
fter prior treatment with cAMP, but unlike ecmA, is
epressed by the continued presence of cAMP (Berks and
ay, 1990). However, it is not clear how these findings

elate to the role of DIF-1 in the differentiation of cell types
n developing organisms. At the slug stage, the anterior
ontains higher concentrations of cAMP, whereas DIF-1
evels are unexpectedly higher in the prespore zone (Bren-
er, 1977; Brookman et al., 1987; Kay et al., 1993). In
ddition, DIF-1 rapidly induces the expression of the degra-
ative enzyme DIF-1 dechlorinase (Insall et al., 1992).
everalfold higher levels of DIF-1 dechlorinase are found at
he anterior of slugs (Kay et al., 1993), suggesting that
egative feedback pathways may play a role in DIF-1
nduction of prestalk genes. Some evidence suggests that
AMP-induced competence for subsequent induction of
cmB by DIF-1 is mediated by the cAMP receptor isotype
AR2, which is expressed only in pstA cells (Saxe et al.,
996; Verkerke van Wijk et al., 1998).
Work in a number of laboratories has demonstrated that

ndividual growing cells may have an inherent preference to
ifferentiate into particular cell types. In vitro studies, in
hich cells plated at low density are induced to differenti-

te, reveal that cells in S or early G2 phase (the Dictyoste-
ium cell cycle has no G1 phase) at the time of starvation
ave a propensity to differentiate into prestalk cells,
hereas cells in the rest of the cell cycle express prespore
arkers (Clay et al., 1995; Gomer and Firtel, 1987; Maeda,

993; Weijer et al., 1984b). These results occur in isolated
ells at low density, suggesting that cell-autonomous
echanisms play an important role in initial cell-type

hoice and the subsequent regulation of cell-type differen-
iation (Gomer and Firtel, 1987). Lengthening of S phase

sing pharmacological agents leads to an increase in the
raction of cells that initially express prestalk markers

s of reproduction in any form reserved.
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429Cell-Fate Determination in Dictyostelium
(Gomer and Ammann, 1996). Moreover, growing cells syn-
chronized in S or early G2 phase produce organisms with a
disproportionate number of prestalk cells when developed
as a pure population and tend to differentiate into prestalk
cells when mixed with unsynchronized cells (Araki et al.,
1994, 1997; McDonald and Durston, 1984; Ohmori and
Maeda, 1987; Weijer et al., 1984a). Mid/late-G2-phase cells
have a similar tendency to become prespore cells when
mixed with unsynchronized cells (Araki et al., 1997; Huang
t al., 1997; Wang et al., 1988; Weijer et al., 1984a). A screen

for mutations that lead to altered cell-type proportions in
vitro resulted in the isolation of RtoA (Wood et al., 1996). In
trains without a functional RtoA gene, the fraction of cells
hat initially express the prestalk-enriched marker CP2 in
ow-density culture or dissociated aggregates increases from
oughly 10 to 15%, although the number of cells that
nduce a prespore marker gene is not measurably altered.

ost strikingly, the correlation between cell cycle position
nd cell-type choice is lost in rtoA null cells; prestalk and
respore cells are randomly derived from cells in any part of
he cell cycle. Nonetheless, the cell-type proportioning in
toA null cells is similar to that of wild-type cells, suggest-
ng that alternative mechanisms may regulate initial cell-
ype choice in this mutant.

The functional link between cell cycle and cell-type
ifferentiation is unclear. Cells examined early in the cell
ycle have an increase in gene expression and biochemical
ctivity of the cAMP signaling components needed to
nitiate aggregation (McDonald, 1986; Wang et al., 1988). It
s possible that cell-cycle-coupled regulation of cAMP relay
omponents affects the timing with which cells begin
hemotaxing toward cAMP. These temporal differences
ould allow rapidly aggregating cells to establish morpho-
en signals that affect cells which enter the developing
ound later (Araki et al., 1997; Early et al., 1995; Krefft et

l., 1984). Characterization of the promoter elements con-
rolling the cAMP signaling components that are up-
egulated early in the cell cycle may elucidate the mecha-
isms that link the cell cycle to cell-type differentiation.
Growth conditions can also affect cell-fate choices, sup-

orting the model that heterogeneity within populations of
egetative cells may affect initial cell-fate decisions and
hat the propensity to differentiate into prestalk or prespore
ells may be related to cell cycle position at the onset of
tarvation (Blaschke et al., 1986; Forman and Garrod, 1977;
each et al., 1973; Tasaka and Takeuchi, 1981).

THE SWITCH BETWEEN AGGREGATION
AND CELL-TYPE DIFFERENTIATION

After mound formation, a developmental “switch” oc-
curs. Rising cAMP levels lead to permanent adaptation of
aggregation-stage pathways mediated by the high-affinity
receptor cAR1 and repression of expression of the compo-

nents required for aggregation (Abe and Yanagisawa, 1983;
Firtel, 1995; Mehdy et al., 1983; Town and Gross, 1978).

t
fi

Copyright © 1999 by Academic Press. All right
his same receptor-saturating dose of cAMP leads to the
ctivation of another set of cAMP-receptor-dependent path-
ays (Kimmel and Firtel, 1991; Loomis, 1996; Schnitzler et
l., 1994; Williams, 1991). In contrast to most but not all
ggregation-stage pathways, the ones induced in the mound
y cAMP through cAR1 are G-protein independent and lead
o the activation of the transcription factors GBF (G-box
inding factor) and Dd-STATa (Fig. 2) (Araki et al., 1998;
rown et al., 1997; Kawata et al., 1997; Schnitzler et al.,
995). GBF binds the G box, an essential cis regulatory
lement found in the promoters of postaggregative and
ell-type-specific genes (Ceccarelli et al., 1992; Datta and
irtel, 1988; Fosnaugh and Loomis, 1993; Hjorth et al.,
989, 1990; Pears and Williams, 1988; Powell-Coffman et
l., 1994). In the absence of GBF, no further cell-type
ifferentiation can occur, as GBF function is required for
he induction of all postaggregative and cell-type-specific
enes examined (Schnitzler et al., 1994, 1995).
Dd-STATa is rapidly tyrosine phosphorylated and trans-

ocated to the nucleus in all mound-stage cells in response
o cAMP (Araki et al., 1998). By the slug stage, Dd-STATa
uclear localization is high only in the very anterior of the
stA domain; however, some pstO cells and ALCs show
eaker Dd-STATa nuclear localization. Little or no Dd-
TATa is found in prespore cell nuclei. In vitro, Dd-STATa
rotein binds to an activating element in the ecmA pro-
oter and to two repressor elements in the ecmB promoter

Harwood et al., 1993; Kawata et al., 1996). Mutation of the
cmA promoter-activating element leads to loss of both
d-STATa DNA binding and ecmA/lacZ expression. In

ontrast, mutation of the ecmB repressor sites, which also
auses loss of DNA binding, results in ectopic expression of
cmB/lacZ throughout the entire prestalk domain and in
LCs. Analysis of Dd-STATa null strains demonstrates

hat ecmB is expressed throughout the prestalk region,
imilar to observations upon deletion of the ecmB repressor
lements. These data suggest that Dd-STATa binding to the
cmB promoter is responsible for ecmB repression during
he slug stage (Mohanty et al., 1999). ecmA is expressed in
d-STATa null cells, although some spatial patterning
efects are observed. Whereas ecmA/lacZ is expressed nor-
ally, ecmO/lacZ staining is seen throughout the prestalk

omain at the onset of slug formation. This may result from
he physical inability of prestalk cell types to efficiently
ort out from each other, as Dd-STATa null cells have cell
ovement defects during aggregation. Alternatively, the

ltered expression of ecmB and possibly other genes may
nhibit the proper specification of prestalk cell types or an
nability to recognize signals required for cell-type segrega-
ion. Interestingly, Dd-STATa null strains fail to produce
talk cells in vivo, possibly due to the hypersensitivity of
d-STATa null cells to cAMP-mediated repression of stalk

ell differentiation, a phenomenon that occurs in wild-type
ells (Berks and Kay, 1988).
Although only Dd-STATa has been analyzed in detail,
wo other Dictyostelium STAT proteins have been identi-
ed (J. Williams, personal communication; Mohanty et al.,

s of reproduction in any form reserved.
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430 Brown and Firtel
1999). Because Dd-STATa null nuclear extracts contain a
DNA-binding activity to the ecmA promoter-activating

FIG. 2. Proteins and extracellular factors controlling cell-type d
various extracellular factors. cAMP functions through the high-affi
cAR4. The receptor for DIF-1, a small, membrane-permeable mol
Experiments with spn null and cAR4 null strains suggest that p
unidentified morphogen gradient that affects PKA activity is sugg

agB may be involved in the production of an autocrine peptide sig
uch a peptide is unknown, but may be a transmembrane histidine
ormation. Expression of stalk cell markers is derepressed in STAT
talk cell differentiation. See text for details and references.
lement, it is possible that one of these proteins may be
esponsible for induction of ecmA. Given the lack of STATs

s
m

Copyright © 1999 by Academic Press. All right
n the genomes of Saccharomyces cerevisiae and Caeno-
habditis elegans, Dictyostelium provides the simplest

ntiation. Prestalk and prespore gene expression are regulated by
receptors cAR1 and cAR3 and the low-affinity receptors cAR2 and
, has not yet been identified, but is expected to be intracellular.

lk cells nonautonomously regulate prespore gene expression. An
by results obtained using rzpA null and wild-type cell chimeras.
at stimulates the differentiation of prestalk cells. The receptor for

se similar to DhkA. STATa appears to play a dual role in stalk cell
ll cells; however, these cells remain unable to complete terminal
iffere
nity
ecule
resta
ested
nal th
kina
ystem in which to examine these important signaling
olecules.
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431Cell-Fate Determination in Dictyostelium
EARLY STEPS IN CELL-TYPE
DIFFERENTIATION

New insights into the mechanisms controlling cell-fate
decisions have been obtained through genetic and molecu-

TABLE 1
Summary of Developmentally Important Genes Discussed in Text

Gene Homology
Expression

pattern

GBF Zn-finger transcription
factor

All cells

Dd-STATa STAT All cells

Spn Ga subunit, PP2C Prestalk, ALC

Ga4 Ga subunit ALC

Ps1A None ND

TagB Serine protease, MDR
transporter

Prestalk

cAR2 Seven-span receptor PstA

cAR3 Seven-span receptor All cells

cAR4 Seven-span receptor Prestalk

GskA GSK-3 Probably all cells
PKA-C PKA catalytic subunit All cells

Erk2 Map kinase ND
rZIP Ring finger, SH3

domain, leucine
zipper

All cells

Wri Homeobox PstA

MEKKa MAP kinase kinase
kinase (contains an F
box and WD40
repeats)

ND

FbxA WD40/F box-containing
protein

ND

HP1 Unknown ND

Note. Effects on prespore and prestalk differentiation refer to nu
egative mutant regulatory subunit (PKA-Rm) and studies on ERK
f these two null strains to aggregate. HP1 is a chemically induced
etermined.
lar genetic analyses of the requirements for cell-type-
specific gene expression. Table 1 presents a summary of the

t

Copyright © 1999 by Academic Press. All right
enes discussed throughout the text, their functions, and
henotypes of their null mutations. Mutational analysis of
he early steps of cell-type differentiation presents some
vidence that the initial differentiation of prestalk cells is
equired for proper induction of the prespore cell popula-

ct of null on
ore population

Effect of null on
prestalk population Notes

ene expression No gene expression No postaggregative or
cell-type-specific
gene expression

eased prespore
ain in slug

Increased pstO,
pstB

No stalk cell
differentiation in
situ, but occurs in
vitro

ene expression
nautonomous)

No gene expression
(autonomous)

Postaggregative genes
expressed (GBF,
LagC)

eased gene
ression

No effect

ene expression Decreased ecmA,
increased ALC

Nuclear localized

ffect Decreased ecmA

ased gene
ression

Increased ecmA,
decreased ecmB

Probably negatively
regulates GskA

eased pspA Increased ecmB Positively regulates
GskA

ased gene
ression

Decreased ecmA,
ecmB

Probably negatively
regulates GskA

eased pspA Increased ecmB
P60/cotC, but
A expressed
mally

Reduced ecmA Classes of prespore
genes are
differentially
regulated by PKA

ene expression No effect
ased gene
ression

Decreased ecmA,
ecmB

May also regulate
A/P gradient of
PKA activity

eased prespore
ain in slug

Increased pstO
domain in slug

Compartment border
maintained

eased prespore
ain in slug

Increased pstO
domain in slug

Compartment border
lost

ased prespore
ain in slug

Decreased pstO
domain in slug

eased prespore
e expression

Increased ecmB Gene has not been
cloned

tants for most genes. Studies on PKA-C have utilized a dominant
e utilized a temperature-sensitive mutant because of the inability
tation and the nature of the genetic lesion is not known. ND, not
Effe
presp

No g

Decr
dom

No g
(no

Decr
exp

No g

No e

Incre
exp

Decr

Incre
exp

Decr
No S

psp
nor

No g
Incre

exp

Decr
dom

Decr
dom

Incre
dom

Decr
gen

ll mu
2 hav
ion. Spalten (Spn), which contains a G-protein a subunit-
like domain coupled to a PP2C-like phosphatase domain, is
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432 Brown and Firtel
required for both prestalk and prespore cell-type differentia-
tion (Fig. 2) (Aubry and Firtel, 1998). Cells lacking Spn
arrest as tight mounds before breaking up into smaller
aggregates. Spn appears to be expressed in prestalk cells and
ALCs during multicellular development. Expression of the
Spn phosphatase domain alone is sufficient to restore
prestalk cell differentiation in spn null cells, indicating that
his is the effector domain, although development of these
trains is not normal. This finding suggests that dephos-
horylation of a specific Spn substrate(s) is a limiting step in
he differentiation of prestalk cells. Mutational analysis of
he Ga-like domain indicates that the activity of the PP2C

domain is regulated by the Ga-like domain, at least in part,
y guanine nucleotides. A second-site suppressor that al-
ows spn null cells to form fruiting bodies has been identi-
ed (L. Aubry and R.A.F., unpublished observations). This
ene (ARCK1) encodes a kinase with a domain structure
imilar to metazoan Raf-1 and contains ankyrin repeats.
RCK1 may compete with Spn for a common substrate or
ould be a target for Spn phosphatase activity. In chimeric
rganisms with wild-type or pslA null cells, a strain that is
nable to differentiate into prespore cells, spn null cells

orm prespore/spore cells but not prestalk/stalk cells, sug-
esting that the defect in prespore cell specification is
onautonomous (Aubry and Firtel, 1998; Yasukawa et al.,
998). Spn may be required for the initial formation of
restalk cells and/or ALCs, which induce neighboring cells
o adopt a prespore fate.

The production of a prespore cell induction factor by
restalk cells has previously been proposed by studies of the
eterotrimeric G-protein subunit Ga4 (Hadwiger et al.,

1994), which is highly enriched in ALCs during multicel-
lular development (Hadwiger and Firtel, 1992). Initial
prestalk cell differentiation is normal in ga4 null cells, but
respore gene expression is delayed and decreased compared
o the parental stain and very few viable spores are produced
n ga4 null cells. Both of these defects are partially rescued
n chimeric mixtures of ga4 null cells with wild-type or

Ga4-overexpressing cells, suggesting that Ga4 may be in-
olved in the production of a prespore induction factor by
he ALC population. The identity of such a factor is
nknown, although putative prespore induction factors
ave been reported (Kumagai and Okamoto, 1986; Oohata
t al., 1997). Studies on cells lacking the prestalk-enriched
AMP receptor cAR4 (described below) suggest that
restalk cells secrete a factor that modulates prespore gene
xpression, but it is not required for the induction of
respore cell differentiation (Ginsburg and Kimmel, 1997).
Another recently characterized gene, PslA, is required for

he differentiation of prespore cells (Yasukawa et al., 1998).
slA has no obvious homology to known proteins, but it
ocalizes to the nucleus, suggesting it is involved in con-
rolling gene expression. Cells lacking PslA make long
ggregation streams with tips forming along their length.
hese tips extend into fingers and differentiate into stalk

ells but leave ;50% of the total population behind as
ndifferentiated cells. No prespore or spore gene expression

r
c
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s detected either in developing cells or in response to in
itro stimulation with cAMP. pslA null cells show a clear
ifference from spn null cells: they fail to enter the prespore
athway when codeveloped with wild-type cells, indicating
hat PslA plays a cell-autonomous role in prespore differen-
iation. Prestalk patterning is affected in pslA null organ-
sms as well. ecmAO/lacZ expression is confined to a
maller anterior compartment and ecmO/lacZ and the ALC
arker Ga4/lacZ are misexpressed in a large fraction of

cells throughout the organism, most notably in the pstA
zone. PslA may be required in prestalk cells for perception
of a negative feedback signal that helps establish the equi-
librium required for the proper proportioning of cell types.
Alternatively, this could be an indirect effect, owing to the
lack of prespore cells, which could be the source of such a
signal. The altered patterning may be partially due to
morphological abnormalities caused by the aggregation
defects.

Development past the tight mound stage requires TagB, a
prestalk-specific transmembrane protein containing a
serine protease domain and an ATP-driven transporter
domain similar to that found in multidrug-resistance genes
(Shaulsky et al., 1995). tagB null cells have greatly reduced
cmA expression, whereas prespore gene expression appears
naffected. A detailed study of spatial patterning showed
eak expression of ecmAO/lacZ, with stained cells prop-

rly localized at the top of the mound. No detectable
cmO/lacZ expression was observed, although this may not
e unexpected considering this promoter is expressed more
eakly than ecmAO/lacZ. tagB null cells make very little
IF-1. However, it is not clear what the linkage, if any, is
etween the lack of DIF-1 in tagB null cells and the

inability of this mutant to induce normal levels of prestalk
gene expression (Shaulsky and Loomis, 1996). Although
some ecmAO/lacZ expression is restored to developing
tagB null cells by DIF-1 treatment, the morphological
defects are not rescued. Chimeric development of tagB null
ells with wild-type cells restores the ability of tagB null
ells to participate in fruiting body formation. Interestingly,
agB null cells are found only in the pstO and ALC
opulations of such chimeras and seem to be excluded from
he anteriormost pstA domain. The phenotypes suggest
hat the initial commitment of starving cells to the prestalk
athway does not require TagB, but the proper differentia-
ion and possibly the divergence of prestalk subtypes may
epend on TagB function. The domain structure of the TagB
rotein is consistent with its involvement in the export of
peptide signal. There is evidence that this is the case late

n development when TagC, a protein highly homologous
o TagB, is required in prestalk cells for the production of
DF-2, a peptide that induces terminal differentiation of
pore cells (Anjard et al., 1998b). Binding of SDF-2 to DhkA,
two-component histidine kinase receptor found on the

urface of prespore cells, leads to the down-regulation of the
ntracellular, cAMP-specific phosphodiesterase RegA via its

esponse-regulator domain (Wang et al., 1999). As a result,
AMP levels rise, leading to the activation of PKA, which

s of reproduction in any form reserved.
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433Cell-Fate Determination in Dictyostelium
induces terminal spore differentiation. SDF-2 is thought to
simultaneously activate PKA-dependent positive feedback
pathways in prestalk cells that cause continued SDF-2
secretion (Anjard et al., 1998a,b). In a similar manner, TagB
may be involved in the production of a peptide signal
required for the differentiation of prestalk cells in the
mound. As maximal induction of prestalk cell differentia-
tion requires PKA, an autocrine signaling system like that
involved in SDF-2 secretion could control prestalk-specific
pathways by modulating the activity of PKA at the mound
stage (Fig. 2). In the absence of TagB, high RegA activity
may maintain low levels of intracellular cAMP, which
would prevent the PKA-dependent expression of prestalk-
specific genes.

Although expression of ecmA, the marker most often
used to identify prestalk cells, is dependent on DIF-1 in
vitro, examination of TagB and cAR2, a cAMP-receptor
isotype specifically found in prestalk cells, indicates that
expression of these genes may not require DIF-1. Expression
of a TagB promoter/lacZ fusion and sorting of prestalk cells
to the apex of mounds are observed in tagB null cells, even
though these cells produce very low levels of DIF-1 com-
pared to wild-type cells (Shaulsky and Loomis, 1996). cAR2,
which is expressed only in the anterior pstA domain of
developing wild-type organisms, is repressed rather than
induced by DIF-1 in vitro (Saxe et al., 1996). These results
suggest that, although a high level of DIF-1 mediates
progression along the prestalk pathway, some early prestalk
differentiation events may be DIF-1 independent or require
only low levels of DIF-1. The genetic lesion(s) in the
DIF-1-deficient strain HM44 has not been identified (Ko-
pachik et al., 1983). Targeted mutagenesis of genes required
for DIF-1 biosynthesis may help resolve this question (Kay,
1998).

REGULATION OF CELL-TYPE
DIFFERENTIATION

Insights into the mechanisms controlling cell-type diver-
gence have been obtained from mutants that retain the
ability to generate prestalk and prespore cells but have
altered proportioning due to cell-autonomous defects in
cell-type differentiation pathways. As the role of extracel-
lular cAMP in the coordination of cell-type-specific gene
expression is well-established, it is not surprising that
mutations in cAMP receptor genes lead to differentiation
and patterning defects (Ginsburg et al., 1995; Rogers et al.,
997). cAR1, the primary chemoattractant receptor regulat-
ng aggregation, is expressed throughout development
Klein et al., 1988; Louis et al., 1993; Saxe et al., 1991; Sun
nd Devreotes, 1991). Cells that do not express the cAMP
eceptor isotype cAR2 arrest at mound stage without form-
ng a tip (Saxe et al., 1993). cAR2 is expressed in pstA cells
arly in mound formation (Saxe et al., 1996). The prestalk

arkers ecmA and ecmB are expressed in cAR2 null

trains, although ecmB expression is somewhat reduced
a
w

Copyright © 1999 by Academic Press. All right
nd expression of the prespore marker pspA is 10-fold
igher than in wild-type cells. As the prestalk population
onstitutes only ;20% of the organism, this increase can-
ot solely be due to conversion of prestalk cells into
respore cells. Comparison of receptor isotype function in
ell culture shows that cAR2 has a much stronger capacity
han either cAR1 or cAR3 to confer cAMP-mediated com-
etence for prestalk gene induction by DIF-1 (Verkerke van
ijk et al., 1998). Combined with the observation that

AR2 induction may be DIF-1 independent, this result
uggests that cAR2 expression may be an early step in the
stablishment of the prestalk cell population, which may be
ependent on DIF-1 for cell-type differentiation. However,
AR2 is not essential for the ability of cells to express
restalk markers (Saxe et al., 1993).
Gene expression defects similar to those found in cAR2

ull cells are observed in cells lacking cAR4, whose expres-
ion is highly enriched in prestalk cells (Louis et al., 1994).
respore markers are markedly overexpressed in cAR4 null
ells, whereas the expression of ecmA and ecmB is severely
educed. Unlike cAR2 null cells, cells deficient in cAR4
omplete development, but slug and fruiting body morphol-
gy are very abnormal and prespore cells are found in the
nterior, normally prestalk region, of slugs. The defects are
ot rescued by exogenous cAMP and/or DIF-1 in cell
ulture, suggesting that, although cAR4 is highly enriched
n prestalk cells, cAR4 plays a cell-autonomous role in gene
xpression in both cell types (Ginsburg and Kimmel, 1997).
AR4 appears to positively regulate prespore gene expres-
ion in a cell-nonautonomous manner. Medium condi-
ioned by wild-type cells contains a secreted factor missing
rom conditioned medium from cAR4 null cells that an-
agonizes the ability of DIF-1 to repress prespore gene
xpression in suspension. This observation may help ex-
lain why, although DIF-1 represses SP60/cotC expression
n cell culture experiments, prespore-specific gene expres-
ion is not inhibited in the posterior of migrating slugs even
hough the DIF-1 concentration is at least double that found
n the prestalk domain (Brookman et al., 1987; Kay et al.,
993).
Studies on gskA, the Dictyostelium homologue of GSK-3,

eveal that, as in higher eukaryotes, this Ser/Thr kinase
lays an important role in cell-fate decisions (Bourious et
l., 1990; Harwood et al., 1995; He et al., 1995; Siegfried et
l., 1992). cAMP signaling through multiple receptors ap-
ears to be integrated to precisely control the level of GSKA
ctivity in each cell (Plyte et al., 1999) (Fig. 2). In gskA null
ells, expression of ecmB is significantly increased and
cmB/lacZ staining is seen throughout developing mounds,
hereas the number of cells expressing the prespore-

pecific gene pspA is reduced. As a result, terminally
eveloped gskA null organisms contain large basal struc-
ures and most cells differentiate into basal disk/stalk cells.
hese studies and in vitro cell culture experiments indicate

hat GSKA is required for repression of stalk cell formation

nd normal induction of prespore gene expression, both of
hich occur in response to cAMP (Berks and Kay, 1988,
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434 Brown and Firtel
1990). Treatment of wild-type cells with LiCl, which inhib-
its GSKA, causes defects similar to those seen in gskA null
ells (Maeda, 1970; Van Lookeren Campagne et al., 1988).
iCl treatment also blocks the conversion of prestalk cells
nto prespore cells in dissected slugs, further supporting the
ypothesis that GSKA is required for prespore differentia-
ion and negatively regulates prestalk pathways (Sakai,
973).
Comparison of gskA null phenotypes to various cAMP-

eceptor mutant strains reveals similarities to cAR3 null
ells (Plyte et al., 1999). Like gskA null cells, cAR3 null
ells have a dramatic increase in ecmB/lacZ staining and a
eduction in pspA expression at mound stage. As described
bove, wild-type prestalk cells differentiate into stalk cells
hen treated with DIF-1 in vitro, but this process is

nhibited by the presence of cAMP (Berks and Kay, 1988).
his does not occur in either gskA or cAR3 null cells.
verexpression of cAR3 in gskA null cells does not restore

AMP repression of stalk differentiation, suggesting GSKA
ies downstream of cAR3. Moreover, cAR3 is required for
AMP-stimulated increase in GSKA kinase activity, consis-
ent with this model. The cell-type differentiation and
orphological defects in cAR3 null cells are much less

evere than in gskA null cells, possibly due to the basal
ctivity of GSKA or the ability of another cAMP receptor,
resumably cAR1, to partially compensate for the lack of
AR3 function (Johnson et al., 1993; Plyte et al., 1999).
Experiments with other cAMP-receptor mutants hint at

he complexity of signaling through GSKA. gskA null cells
xhibit phenotypic effects opposite those of cAR2 and cAR4
ull cells on cell-type-specific gene expression (Harwood et
l., 1995; Louis et al., 1994; Saxe et al., 1993). Treatment of
AR4 null cells with increasing concentrations of LiCl
radually restores prestalk and prespore gene expression to
ild-type levels, indicating that cAR4 may negatively regu-

ate GSKA (Ginsburg and Kimmel, 1997). In vitro cAMP
epression of stalk cell differentiation is more efficient in
AR2 null than in wild-type cells, suggesting that cAR2
ay negatively regulate GSKA (Plyte et al., 1999).
Other protein kinases play prominent roles in Dictyoste-

ium development. PKA and the MAP kinase ERK2 are
ssential elements of the cAMP relay circuit during aggre-
ation and are required for cell-type-specific gene expres-
ion (Gaskins et al., 1996; Harwood et al., 1992; Mann et
l., 1997; Mann and Firtel, 1991; Schulkes and Schaap,
995; Segall et al., 1995; Simon et al., 1992). PKA plays an
ssential role in the differentiation of prespore and prestalk
ells (Fosnaugh and Loomis, 1991; Mann and Firtel, 1993).
xpression of a dominant negative PKA-regulatory subunit,
hich is unable to bind cAMP, in either cell type leads to a
lock in differentiation (Hopper et al., 1993, 1995; Zhuk-
vskaya et al., 1996). Although cells lacking the PKA-
atalytic subunit (pka-cat null cells) are unable to aggre-
ate, cell-type-specific gene expression in response to cAMP
an be examined in cell culture (Harwood et al., 1992;

ann et al., 1997; Mann and Firtel, 1991). Expression of

ome prespore markers, such as pspA, is not dependent on
e
T
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KA (Hopper et al., 1993). In addition, overproduction of
BF in pka-cat null cells at least partially restores the

bility to express ecmA at near normal levels in response to
AMP, suggesting that alternative PKA-independent paral-
el pathways exist in both cell types (Mann et al., 1997).

Throughout development, PKA activity is modulated by
roteins that affect cytoplasmic cAMP concentrations
Devreotes, 1994; Firtel, 1995; Loomis, 1998). Signals that
nduce cAMP production by activating adenylyl cyclase
nzymes are antagonized by pathways that stimulate the
AMP-specific cytoplasmic phosphodiesterase RegA
Brown and Firtel, 1998; Chang et al., 1998; Shaulsky et al.,
996, 1998; Soderbom and Loomis, 1998; Thomason et al.,
998). Cytoplasmic cAMP concentrations may also be con-
rolled through ERK2, which in genetic analyses appears to
nhibit RegA function (B. Wang and A. Kuspa, personal
ommunication).
The function of PKA in cell-type differentiation appears

o depend in part on rZIP, a ubiquitously expressed adaptor
rotein containing a RING finger, SH3 domain, leucine
ipper, and glutamine-rich repeat (Balint-Kurti et al., 1997).
zpA null cells have a slight reduction in ecmA and ecmB
xpression and a three- to fivefold increase in prespore gene
xpression. In addition, no scattered ecmAO/lacZ or ecmB/
acZ staining is observed in the prespore zone, suggesting a
efect in ALC differentiation. Overexpression of rZIP
auses the opposite effect: expression of prestalk genes is
p-regulated and prespore gene expression is strongly re-
ressed. Mosaic experiments using rzpA null and wild-type
ells have yielded intriguing results (Balint-Kurti et al.,
998). The prespore marker SP70/cotB, which is responsive
o PKA, is expressed throughout the posterior in both
trains. However, when a small fraction (10%) of rzpA null
ells is codeveloped in chimeras with wild-type cells, only
he rZIP null cells in the anterior part of the prespore zone
xpress SP70/cotB, even though mutant cells are evenly
istributed throughout this domain. Importantly, pspA/
acZ, whose induction is PKA independent, is expressed in
ll rzpA null prespore cells of the chimera. Expression of
P70/cotB in the whole prespore compartment is restored
y treatment with the membrane-permeable PKA activator
-Br-cAMP, implying that rzpA null cells require a higher
evel of PKA activity to express PKA-dependent prespore

arkers and that PKA activity is higher in the anteriormost
ells of the prespore domain of these chimeras. Heteroge-
eity within the prespore population has been previously
eported. Disaggregated prespore cells return to the region
f the prespore domain from which they originated when
llowed to form new slugs (Buhl et al., 1993). Furthermore,
xpression of lacZ from an SP60/cotC promoter from which
he two 59-distal of three G boxes (GBF binding sites) have
een deleted results in a pattern of expression similar to
hat seen in the rzpA null cells in chimeras with wild-type
ells (Haberstroh and Firtel, 1990; Haberstroh et al., 1991).
xpression of lacZ from this altered promoter is seen in the

ntire prespore domain of rzpA null cells developed alone.
he results suggest that, in addition to affecting the thresh-
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435Cell-Fate Determination in Dictyostelium
old of PKA activity required to induce prespore gene expres-
sion, rZIP may regulate the level of a graded anterior–
posterior signal that controls prespore gene expression by
modulating the activity of PKA (Fig. 2). The relationship of
this putative gradient to the cAR4-dependent secreted fac-
tor is unknown. It is interesting to note that, although
cAR4 and rzpA null strains have a similar increase in
prespore gene expression, it appears that in wild-type cells,
cAR4 and rZIP function antagonistically in the nonautono-
mous regulation of prespore differentiation.

CELL-TYPE PROPORTIONING

One model to explain the reproportioning of dissected
slugs is mutual inhibition in which both prestalk and
prespore cells secrete diffusible factors that prevent cells of
the other fate from switching cell types (Loomis, 1993;
Soderbom and Loomis, 1998). Removal of either population
would lead to derepression and redifferentiation until
enough cells have switched fates to reach equilibrium.
However, the mechanisms governing cell-type proportion-
ing in vivo are likely to be more complex. After removal of
he prestalk domain, ALCs rapidly migrate to the anterior,
ifferentiate into prestalk cells, and are replenished by
edifferentiation of cells from the prespore population and
heir subsequent conversion to ALCs (Abe et al., 1994;

Sternfeld, 1992; Sternfeld and David, 1982). This process
has been termed “transdifferentiation.” In addition, no
ecmAO/lacZ or ecmB/lacZ staining is apparent in the
osterior of rzpA null cells, suggesting a defect in ALC
ormation (Balint-Kurti et al., 1997). When prestalk and
respore domains of rzpA null slugs are separated, the
osterior section is unable to form a fruiting body, suggest-
ng that proper ALC differentiation is required for efficient
onversion of prespore into prestalk cells. Conversion of
respore cells to ALCs, ALCs to pstO cells, and pstO to
stA cells is observed during normal slug migration (Abe et
l., 1994; Detterbeck et al., 1994; Sakai, 1973; Shaulsky and
oomis, 1993). During slug migration, some pstAB cells
rematurely enter the stalk differentiation pathway and
hed from the back of the slug (Sternfeld, 1992). This
opulation is regenerated by the conversion of some pstA
ells to pstAB cells and their entry into the cone at the
nterior of the slug. Therefore, proportioning of cell types is
ikely to be a result of equilibria between several cell types
pstA 7 pstO 7 ALC 7 prespore) (Blaschke et al., 1986;

acWilliams et al., 1985).
Mutational analysis suggests that the control of cell-type

roportions is complex and involves multiple regulatory
athways, including the function of two homeobox-
ontaining transcription factors (Han and Firtel, 1998).
isruption of one of these genes, Wariai (Wri), causes the

ize of the pstO domain to more than double, with an
ccompanying decrease in the prespore compartment. The

stA domain is unaffected in wri null slugs. Interestingly,
ri appears to be expressed primarily in pstA cells and the

e
i
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ri null phenotype can be rescued by Wri expression from
he pstA-specific ecmA promoter but not the ecmO or
respore promoters. In mosaic experiments, wri null cells
nduce an expansion of ecmO/lacZ expression in a few
odeveloped wild-type cells, further supporting the notion
hat the wri null defect is cell nonautonomous. Although it
as not yet been determined if wri null cells initially form
oo many pstO cells, the fact that altered ratios are seen
fter slug migration suggests that wri null cells have a
efect in the homeostasis mechanisms that maintain cell-
ype proportions. Because it is difficult to accurately mea-
ure the number of ALCs, it is unclear whether the pres-
ore7 ALC, ALC7 pstO, or both equilibria are disturbed.
In cells containing a mutation in the MAP kinase kinase

inase, MEKKa, a similar alteration is observed (Chung et
l., 1998). The pstO domain is expanded and the prespore
omain is reduced; however, unlike wri null slugs, the
harp border between the compartments is lost. PstO cells
nd prespore cells are intermingled, although no cells
ppear to express both markers. In mosaic experiments
ith wild-type cells, mekka null cells appear to initially

express prespore genes. As development proceeds, this
expression is lost and presumably these cells differentiate
into prestalk cells, suggesting MEKKa function is involved
n maintenance of prespore identity. In accord with this
nding, cells overexpressing MEKKa form the majority of

the prespore population when codeveloped with wild-type
cells. The results indicate that MEKKa may influence each
cell’s sensitivity to extracellular morphogen factors. A
higher level of MEKKa activity seems to shift the balance of
cell-type proportions toward the prespore fate at the ex-
pense of the pstO/ALCs.

MEKKa has a C-terminal F box and WD40 repeats that
target the protein to the cell cortex. In addition, these
motifs target MEKKa for ubiquitin-mediated degradation
via the conjugating enzyme UbcB. MEKKa is stabilized
rom degradation by the deubiquitinating enzyme UbpB.
egradation of a constitutively expressed GFP-F box/WD40

usion protein is spatially and temporally regulated in
hole organisms. This GFP-fusion protein is found prefer-

ntially in prestalk cells and is degraded in prespore cells.
ery little GFP-fusion protein is seen in any part of ubpB
ull slugs and ectopic expression of UbpB in prespore cells
esults in GFP-F box/WD40 protein stability throughout
he organism. Another F-box/WD40-repeat-containing pro-
ein, FbxA, which contains a novel N-terminal domain, has
ull and overexpression phenotypes that are the opposite of
hose of MEKKa mutant strains (M. K. Nelson, A. Clark, T.
be, A. Nomura, N. Yadava, C. J. Funair, K. A. Jermyn,
. A. Firtel, and J. G. Williams, in preparation). One
ossibility is that FbxA lies downstream of MEKKa and
EKKa regulates FbxA function.
Another mutant, HP1, displays a conversion of prespore

ells to prestalk pathways (Bichler and Weijer, 1994). The
enetic lesion in this strain has not been identified. Careful

xamination of developing HP1 cells shows that many cells
nitially express prespore genes but subsequently change
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436 Brown and Firtel
cell types and begin expressing ecmB/lacZ. Initial pattern-
ing appears normal in this strain and cells that switch fates
remain in the posterior zone, suggesting that they may
function as ALCs. A small fraction of wild-type cells
codeveloped in a primarily HP1 slug properly differentiate
into prespore cells. This result indicates that HP1, in
contrast to wri null cells, has a cell-autonomous defect in
sensitivity to extracellular signals that stabilize prespore
identity. Because it was isolated in a screen for strains that
differentiate in the presence of 5 mM caffeine, which
inhibits adenylyl cyclase activation, HP1 is thought to
contain a defect in cAMP signaling. As cAMP is required for
maintenance of prespore gene expression and repression of
ecmB, the HP1 phenotype could be due to a reduced
sensitivity to cAMP. This possibility has not yet been
directly tested. The phenotype of HP1 suggests a genetic
relationship to gskA and cAR3 null cells, which have
similar characteristics.

FUTURE DIRECTIONS

Although much has been learned about the processes
governing cell-type induction and differentiation in Dictyo-
stelium, many questions remain. An in vitro analysis of
early aggregation-stage gene promoters may shed light on
the mechanisms by which the cell cycle influences initial
cell-type choice. Further mutagenesis, including the isola-
tion of a strain blocked in DIF-1 biosynthesis, will elucidate
the early steps in prestalk cell differentiation. Intercellular
induction of prespore cells by the prestalk population will
be clarified by the further purification and characterization
of extracellular factors produced by prestalk cells. Further
mutational analysis and identification of secreted factors
will be necessary to determine the mechanisms that control
the equilibria between cell types.

Highly conserved molecules have been found to play an
integral role in Dictyostelium development. The rapid
production of genomic information from Dictyostelium
and other organisms is likely to reveal many more similari-
ties between the cell-type induction and maintenance
mechanisms of Dictyostelium and higher eukaryotes.
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